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Thermodynamic and hydrodynamic peculiarities of a foam lamella confined in a cylindrical pore
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The paper investigates a specific behavior of foam films: lamellae confined in a cylindrical prewetted pore.
Since both the lamella and wetting film are ultratkiin100 nm, classical thermodynamics is generalized to
account for the effects of intermolecular forces. The conditions of coexistence of a lamella and wetting films
are established. The problem of lamella motion is considered as a free boundary problem. The theory predicts
three sliding regimes, depending on the priority of viscous, long-range surface, and capillary forces. At low
speeds, the long-range surface, and capillary forces dominate the viscous one. The friction force acting on the
lamella is then proportional to the speed. The pressure drop required to keep the lamella moving can be of the
same order of magnitude as the critical pressure drop for lamella rup8¥@63-651X98)07112-§

PACS numbsgps): 82.70.Rr, 68.10-m, 68.90:+g

[. INTRODUCTION slight. The reduction in apparent gas viscosity, however, can
be significant because the viscosity of the wetting fluid is
The problem of foam transport in porous media has remuch larger than that of the gas.

ceived a great deal of attention in the previous decades due The other model of the foam flow through a capillary is
to the unique ability of foams to reduce the gas flux throughbased on the wavelike motion of lamell4&]. For each
the medium[1,2]. Two main mechanisms of this reduction lamella in the train, the physical picture of the flow re-
have been proposed. The first is attributed to a specific actiosembles a flow generated by a sail boat. Thus the model is
of the capillary forces, which leads to the blockage of the gagalled the sail boat model. The lamella draws a menisities
paths by the foam filmsor lamellag. As a result, the per- Plateau border so that a lubrication flow occurs within both
meability to gas is reduced up to several orders of magnitudthe meniscus and the respective wetting films. The lamella
compared to that for the corresponding gas-liquid systenserves as a sail, thus forcing the wetting film to move. Simi-
without a foaming agent. In addition to a reduction of thelarly to the Bretherton scheme, the main flow patterns are
permeability, foams radically change the rheological behaveoncentrated within the wetting film. However, the lamella
ior of the gas phasgl-3]. The conventional point of view thickness, its radius of curvature, and the lamella tension
on the effect originates from a work by Brethertpf], in  may depend on the changes within the wetting film. There-
which he explained the mechanism of the nonlinear frictionfore, the law of lamella motion cannot be predicted in ad-
of a bubble as a result of the competition between the capilvance, since collective phenomena drive the dynamics of
lary and viscous forces. In particular, he showed that theeach lamella. Lamellae can move steadily only under certain
expected extra-pressure draf® additional to the Laplacian restrictions on pressure distribution within the train.
capillary pressure, increases with the bubble speed tg the The above described schemes of foam friction seem to
power. Hirasaki and Lawsd®], and some other®.g., Refs.  operate with different objects; the first one deals with the
[1,6]), applied the Bretherton approach to bubble train mo-bubble as a whole, while the second one treats each lamella
tion through smooth capillaries and bead packs. They asndependently. However, from the mathematical point of
sumed, though implicitly, that the foam flow is similar to the view, both schemes deal with foam lamellae rather than the
motion of a hypothetical single-phase system. Thus the joindiscrete bubbles. In spite of the sufficiently conventional di-
motion of the gas, liquid slugs separating the isolatedvision, the distinctions should be stressed, because they im-
bubbles, and the wetting film coating the pore walls is treategly different mechanisms of foam transport in porous media.
by means of the so-called pseudohomogeneous Darcy floim particular, the first scheme is implicitly associated with
model that prescribes aa priori relation between the ap- the creep of the bubble train as a whole, while the second
plied pressure gradient and the resulting flow rate. Withintreats the foam motion as a wavelike displacement of lamel-
this approach, there is no relative motion of foam lamellaejae in caravans.
and every bubble moves in unison with others. However, the The main goal of this paper is to clarify the nature of
average velocities of different phases can be distinguishedamella sliding through a smooth capillary. Though in earlier
In particular, the steady velocity of the gas bubble is deterpapers one of us put forward the physical idea underlying the
mined by the average velocity of the faster flowing fluid nearsail boat mode(7], no mathematical formulation has been
the center of the lamelléor liquid leng. Then the volume presented. To our knowledge, the only work that utilizes
swept out by a long bubble moving at a constant sp¢edn  elements of the sail boat model is that presented by Ida and
be estimated by the product of the average speed of the lidviksis [8]. However, they were interested in the lamella
uid and the cross-sectional area of the lining film. The estithinning phenomena, and postulagegriori the linear New-
mation reveals that the average speed of the wetting fluid isonian friction law for the lamella. The present study is
less than the bubble velocity, even though the difference iaimed at the physical picture of the lamella slippage.
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The relative intensity of viscous and capillary forces canby their disjoining pressure. If the rock is not wetted, the
be expressed in terms of the capillary number=GadJ/ o, in liquid phase is accumulated at the pore corners or forms
which u is the fluid viscosity U is the lamella velocity, and discrete droplets. However, this situation is rare, since the
o is the surface tension. In most applications, the values opresence of surfactant improves the wettab(lit@,17. Thus
the capillary number are very small; for example, assumingve consider only wet capillaries.
that the typical seepage speedUs=1 cm/day, one obtains In Sec. I, we discuss thermodynamic peculiarities of free-
Ca~10% for aqueous foams withu~10"3%Pas, o  standing lamella. Because of its unique structure, the lamella
~0.03 N/m. We confine ourselves to this case in the presergerves as a thermodynamic phase; therewith, it senses what
paper. It is a known fact that the Bretherton theory is unabldhappens in the wetting film. As a result, in confining systems
to reproduce the characteristic feature of the wetting filmssuch as pores, the conditions of equilibrium coexistence of
dynamics in this range of capillary numbdr,9,10. Be-  an individual lamella and the wetting film prove to be spe-
cause of the mathematical similarity of the Bretherton prob<ific. The thermodynamic model is further generalized to ac-
lem and the problem of lamella motion, one may expect &ount for the hydrodynamic feature of the lamella motion. In
discrepancy between the theory and experimental data on tfgec. 111, we formulate the sail boat model of lamella sliding.
lamella resistance. Actually, Hirasaki and Lawg&h dem-  Then we consider a traveling wave solution in Sec. IV. The
onstrated experimentally that even in the range of capillaryspjytion possesses a rather wide spectrum of admissible re-
numbers appropriate for the Bretherton theory, the Pressuigimes of lamella motion. The regimes depend on the priority

drop per foam bubble is about one order of magnitude largeg ihe forces that influence the lamella motion. In the regime

than that predicted by the theory. They attributed this disy gma)| capillary numbers, the shape of the Plateau border is

crepancy to the effgct Of. thg su_rface tension gradient that I3imost entirely controlled by the capillary and surface forces.
caused by a specific redistribution of the surfactant over th his is the so-called quasistatic regime of lamella creep. In

interface. Later on, this hypothesis was assessed theoretical . . .
by Herbolzheimer[11] and Chang and RatulowsKi2] abcordance with the ordinary approach to the calculation of

They assumed the solution to be dilute, and obtained an extrﬂge tra}nsport coefficien(s.8], we are mterest(_ed.m small per-
pressure drop only & times the Bretherton expression. tyrbza_tlons of the thermodynamic charaqterlstlcs of the wet-
Therefore, the anomalous extra pressure drop observed B9 film. We show that the lamella velocity depends linearly
Hirasari and Lawson cannot be explained by the surface terf the pressure drop across the lamella. The friction coeffi-
sion gradient only. cient is a_ffect_ed by the phy3|c0c_hem|ca_l properties of the
Although the scope of the reasoning for the discrepancyp@r “wetting film plus substrate” via the disjoining pressure
between the Bretherton theory and his experiment on a singhéotherm.
bubble has been extended, all the explanations have always
been attributed to the ordinary lubrication approximation.
The explanations include wall roughnd4s], instability of Il. WHY A LAMELLA DIFFERS FROM A LENS.
the meniscu$4], and adsorbed impuritigg,14,15. FREE-STANDING LAMELLA
Teletzke[14] was the first to point out the significance of ] ] ] o
long-range molecular forces when the meniscus extends to a_Prior to analyzing the mechanism of lamella friction, we
film of a very small thicknes§l um or les3. He treated the briefly review the thermodynamic conditions that elucidate
displacement of an individual bubble in a quasistatic regimethe distinction between a lamella and liquid lens. The analy-
and augmented Bretherton’s theory by including the disjoin.SiS of the lamella equilibrium in a bulk foam is well known,
ing pressure that serves as a force per unit area additional &nd it has an elegant solution in the form of Plateau’s law
ordinary pressur¢l16]. The concept of disjoining pressure [19]. However, the simple case of a lamella spanning a wet-
allows one to use conventional hydrodynamic variables anded pore appears to have been nondeveloped. At the same
at the same time, to account for double-layer electrostatitime, such a case could clarify the role of substrate wettabil-
forces and the like inherent to an ultrathin film. Teletzkeity and its influences on the foam stability.
resolved Bretherton’s enigmatic assertion that the thickness To explain the distinctions between a lamella and liquid
of the deposited film is independent of the substrate wettalens, it is useful to recall general micromechanical features of
bility and diminishes as the capillary number approacheshe lamella formatior20,21. A foam lamella forms in two
zero. In particular, he showed that the film thickness levelstages. The first one is the creation of a lens. The wetting
off to an equilibrium value at the limit of negligibly small film coating the capillary snaps off and transforms into a lens
capillary numbers. Chefil3] confirmed Teletzke's predic- when the film thickness exceeds a certain valda,23.
tion by measuring the thickness of film surrounded by airThen, under the Laplacian capillary pressure, a lens squeezes
bubbles and oil drops in water. We select the case of ultraliquid away until its interfaces touch each other. At this mo-
thin wetting films, because of its basic importance in thement, a lens that contains a pure liquid immediately disap-
treatment of the problem of the foam friction at very low pears. However, if a surfactant is present, a lens with adjoint
speeds. interfaces can be stable. A stable lamella may form as the
The foam resides in a porous medium as a gas-liquid mixresult of the transition from the bulk solution to an interest-
ture: a continuous liquid phase wetting the rock and the gaig thermodynamic state. Owing to the effects of the lamella
that is made discontinuous by lamellae. The wetting films ordisjoining pressurdl,(h|), the effective tension  of a
the pore walls of varying curvature link the menisci in the lamella differs from the sum & of the tensions of its two
corners of cusped pores, hence the films are forced to haveimterfaces with the surrounding gas. Thus the tension has the
varying thickness in order to balance the capillary pressuréorm [16,24].
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L A h'[y=_.=0 (3

at infinity, and
h'[x- _o=tan By (4)

at the contact line.

In Eq. (2), Py and P,, are the gas and fluid pressures,
respectively]I(h) is the disjoining pressure; is the surface
tension, and a prime denotes the derivative with respext to
At infinity, we have a uniform film of the thickness., .

-4 By > Hence the following equation holds:
0 X
g
FIG. 1. Free-standing lamella confined in a cylindrical capillary. (r_—h)+l_[(hoc)= Pyg—Puw- 5)
0 )
2y=20+11,(h)h=20+ JmH|(h)dh+H|(h|)h| , The contact_anglgéio cannot be presgmed as a physical con-
hy stant, since it is affected by the capillary pressure. More pre-

(1) cisely, the force balance at the contact line, where the lamella
meets the meniscus, takes the form
where o is the “bare” surface tension, and' is the effec-
tive surface tension.
The force balance at the junction between the Plateau
border and lamella thus requires a finite contact ahg.
The contact angles are typically small, ranging from some

V\g%atzlessl than 1° to a Lev;g degre(mre];, forr] a review, Refs_.bl line tension[25,29. The model with a line tension is aimed
[26, 27)). It is recognized, however, that they are responsibley ;.\ jicit consideration of the effect of the transition zone

for the patterning in bulk foamg28]. The question naturally penyeen the meniscus and flat lamella. The transition zone,
arises to what extent the substrate wettability influences thg . over can be correctly taken into account by the tech-

equilibrium property of a lamella. nigue of matching asymptotic expansidid]. We focus on

|-f-T%| clr;';mfy tg's que_snon,dvvle ?OES'?er trllle ?omeV\_/hat (S)'m'the transition zone between the meniscus and wetting film,
plified thermodynamic model of the lamella formation. OUr ,e.5 56 it plays the key role in hydrodynamics. In the ther-

basic hypothesis is that the characteristic height of the Pl%odynamic equilibrium, the disjoining pressure in the
teau border is much greater than the characteristic size of tngmella equals the capill’ary pressure

transition zone between the lamella and menis@tg. 1.
Usually, the pore size, is of the order of 10Qum, and the o
transition zone between the flat lamella and Plateau border is I1)(h) = Pyg— Py=——— +1I(h,). (7)
assessed ds-1 um [29]. Therefore, the contact conditions (ro—h.)

of the lamella and meniscus can be modeled by introducing a ) )
sharp contact line with the associated contact angle Hence the contact angle senses what happens in the wetting
—2p3,, at which liquid-air interfaces mege5). In the fol-  film far from the contact line. ,

lowing treatment, we consider the so-called regime of The equilibrium shape of the meniscus can be found ex-
pseudopartial wetting[16,30. The regime is termed pI|C|_tIy by expressmg_thg Yqung-LapIace equation via the
“pseudo” because the solid is completely coated with a filmcosine of the current inclination angle of the profig2]

of the thicknesd, but, at the same time, the meniscus could

form a finite apparent contact angle. Since the radius of ac- cosB(h)=(1+h'?)~*2 (8)

tion of the lamella is small compared with the height of the

Plateau border, we assume that the wetting film senses onljhen Eq.(2) takes the form

the disjoining pressure caused by the substrate. An analysis

20 sin ,80:2’)/:20'+ f:H|(h)dh+H|(h|)h| . (6)
|

Sometimes, the equation is modified by adding a term with a

of the equilibrium condition for pores comparable with the d cosp(h) cosp(h) Pyg—P, 1
thickness of transition zone {~1) is beyond the scope of B dh + (ro—h) & P 1(h), (9
our paper.

The equilibrium shape of the meniscus, for example, of itsng the boundary conditior(8) and (4) give
left branch can be obtained by integrating the augmented

Young-Laplace equation cosB(h,)=1 (10)

o_h//

g
(1+h’2)3/2+ (fo—h) (11 h'2)T2

=Py,—P,—1II(h) (2) COS B(pg)=CO0S By. 1y

Integrating Eq.(9) together with the boundary conditions
together with the boundary conditions (10) and(112), we arrive at the formula for the crest height
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(Pg—Py)
5o (2ro=po=h.)(p—h..)
1 (ro )
=—f (ro—MII(h)ydh+(ro—h..) = (ro— po)cos Bo.
g Jh, £
€050 - cosfy Bo
(12 '

It is useful to rewrite EQ.(12) in its customary form
[25,33 by introducing the apparent contact anglas 4

0030214’; o o H(h)dh‘f’m

1 fp() (ro_h) hozc 7

. (13

1Hh h..| 2 .

Then Eq.(12) takes the following familiar forni25,33:

P,—P
% ro(1—92)=cos #— 9 cos By, (14
where
[o—
19:( 0 Po).
)
In the limiting casepq/ry<<1, or in the two-dimensional ()

case, Egs(13) and(14) give
FIG. 2. (8) Geometrical construction elucidating the generalized
1 (ro 1 Young-Laplace equatiofiL6). (b) The apparent contact angle loses
cosf=1+— J' IT(h)ydh+ = II(h.)h., (19 s physical meaning if the apparent radius of the Plateau border is
h smaller that a certain value.

It should be noted that the resulting profile has been pre-
sented by several authors in different forms, for example,
Refs.[35,23,32,3% Thus the Plateau border has the form
In particular, Eq(16) is merely the Young-Laplace equation
written for an apparent interface, provided that the interface h (( fﬁo(H(h)—H(hW))d h) -2 )1/2

X= f CoS Bo— -1 dh

(o
pg—PW:% (cos 6—cos By). (16)

is modeled by an arcfFig. 2(a)]. The range of applicability

of Eq. (15) is restricted to the film thickness, ensuring the
existence of an apparent contact angle. Thus, the inequality
6=0 must hold. In the opposite case, the meniscus does not |n particular, for any disjoining pressure isotherm of the
intersect the capillary wall and the apparent contact angléorm I1(h)=A,/h" with an integem, the size of the transi-
loses its meaningFig. 2(b)]. However, even in such a case, tion region can be estimated 45~ poh../(1—cosBon

Eq. (16), holds and allows one to assess the effect of thgsee the Appendix In this respect, the size of the Plateau
substrate wettability on the thermodynamic characteristics oforders of lamellae created from different frothing solutions
a confined lamella. In the theory of wetting of pure liquids, agre indistinct, provided that the physical paramejgysaind
similar modification of the Young-Laplace equation wash_ are identical.

pointed out a long time ago, and now the existence of a Concluding the results of this section, we emphasize that
prolonged transition zone provides a useful tool for measurfor a confining lamella, the conditions of thermodynamic
ing the disjoining pressure isotherms and related characterigquilibrium depend on the wettability conditions for the sub-

tics (for a review, see Ref34]). _ _ strate. Hence the conditions must be taken into account in the
Using the assumption that the meniscus crest is mUCBnaIysis of the lamella friction.

higher than the film thickness, and the crest is much smaller

than the_rad|u§ of capillary, we may consider pnly the || HYDRODYNAMICS OF LAMELLA SLIPPAGE.
asymptotic profile of the Plateau border. The profile is ob- SAIL BOAT MODEL

tained by integrating Eq9) in the limiting caser g— o,

Po g

(18

1 rh In the thermodynamic equilibrium, the contact conditions
cosB(h)=— f ([I(t)—II(h,))dt+1. (17 between a free film and a wetting film can be found by ap-
0 Jh, plying ordinary thermodynamic rules. The case of moving
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lamella dictates rules. The flow pattern within the wetting ' 2% %
film and lamella plays an important role here. In the motion, : 0
all geometrical parameters such as the lamella thickness, : v
wetting film thickness, inclination angles, and curvatures of \

the menisci at the Plateau border altogether must be mutually F 'r\

consistent. From the hydrodynamic point of view, the
lamella causes a time-dependent tensile force applied to the
wetting film surface. Therefore, from the mathematical point
of view, the problem of determination of the shape of the
moving wetting film can be considered as a free boundary
problem. Thus the thickness of the wetting film behind and
ahead of the contact line, and the time-dependent coordinates
of the contact line, must be determined. This should be done ’,B@ B @)
by accounting for the specific features of the coexistence ¥y e
conditions of the free film and the wetting film. T T

The problem requires the solution of the respective hydro-
dynamic problem for the wetting fluid, which can be a diffi-  FIG. 3. Schematic of a lamella sliding over the wetting film.
cult task. However, the lubrication approximation of the flow
pattern can be utilized instead. While not precise, it often (a) Continuity condition.The first boundary condition is
provides correct trendg,10,30,37—3P Thus, neglecting the the continuity condition, namely,
gas viscosity and assuming that pressures within the bubbles

are constants, the volumetric flow rate can be written as h_ly—s—0=hilx—s+0=p, (23
h? P, where¢ is the contact line position.
q=- @ ox (19 (b) Force balanceThe usual conditions of local mechani-

cal equilibrium give the second boundary condition. How-

where is the viscosity of the wetting fluich;(i=+) is the ~ €ver, some restrictions due to the geometry appewy. 3.
film thickness in each bubble, andss the coordinate along We denote byg; (i=*) the inclination angle of theth
the Capi”ary_ At each point, the preSSLPQ, across the film alr—Wettlng fluid interface with respect to the rlgld wall.

is a constant that depends on the film thickness as follows:Since the profile of the “minus™ film is described by an
increasing function, and the “plus” film by a decreasing

Pw=Pi—=20iH—-1I1(h;), (200  one, the angle®; are expressed as
whereP; is the gas pressure within thigh bubble,o; is the oh_
surface tension in thith bubble, and B is the curvature of tanB-(p)=—-- : (24
the interface. Hereinafter, we consider the limiting case x=¢-0
h/ry<<1. Then the curvature can be expressed as oh

n
thi ( dh| 2)3/2 tanB+(p):_ IX (25)
— _ x=¢+0
2H _dxz/ 1+< dx) . (21

Thus Egs.(24) and (25 connect the inclination angles

The presence of the disjoining pressilitéh;) guarantees with the first spatial derivative, i.e., with the slope of the film
the film stability. Thus, the flow within the film is controlled profiles at the contact line. On the other hand, the inclination
by the “dynamic” capillary pressure, and it tends to an equi-angles depend on the lamella tension, as follows from the
librium between the capillary, surface, and viscous forcesconditions of mechanical equilibrium:
For example, if the pushing force is switched off, the bubble
profile works out the shape of constant mean curvature, as  0-C0SB_(p)— o, C0SB,(p)=2vy4sin y—Fg, (26
Egs.(20) and(21) predict.

The condition of mass balance provides the final connec- o_sin B_(p)+o,sin B (p)=2vy4COS ¥, (27)
tion between the pressure and film thickness:
where 2y, is the dynamic tension of the lamella, aRg is
the extra force caused by a specific friction of the contact
line. The value of this force is unknown beforehand, and it
must be found.
Thus Eqgs(19)—(22) give two film profilesh_ andh, asso- The surface tensions in adjacent bubbles can be distin-
ciated with the left and right bubbles, respectively. The pro-guished by virtue of different dynamic concentrations of the
files have to be matched at the three-phase contact line. Aurfactant. However, if we neglect the concentration effect,
the free boundary, i.e., at the three-phase contact line, fivihen the surface tensions in different bubbles do not differ.
boundary conditions should be formulated because the cuAs shown in Sec. Il, the equilibrium lamella tension is a
vature in Eq.(20) is expressed by means of the second defunction of the film thickness. However, the dynamic lamella
rivatives of the fields, and Eq$19) and(22) add two more tension differs from its thermodynamic value due to a con-
derivatives. tribution from the hydrodynamic flow within the lamella.

ﬂhi aq _

ot T ox (22
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(c) Lamella thickness and dynamic tensi®e assume lamella thickness depends implicitly upon the dynamic pres-
for simplicity that, during the motion, the lamella bulges sure drop, the magnitude of the pressure within the lamella,
uniformly like a spherical cap and does not change its voland the height of the crest. Since the pressure within the
ume; the fluid is redistributed over a new area due to aramella must be equal to the pressure in the wetting fluid, EqQ.
elongation flow. The main objective of this simplified deri- (31) provides a relation between the parameters of the wet-
vation is to illustrate the nature of dynamic tension. Thus thding film and the lamella thickness. If the functional form of
first assumption permits the description of the flow withinthe disjoining pressure is given beforehand, the lamella
the lamella in spherical coordinates. The second one imposékickness can be found from E1) at any instant of time
a diagonal form for the viscous stress tensor. The nonzerotas a function of the input parameters. Finally, the dynamic
components of this tensey, , 74y, andr,, are functions of tension of the lamella can be found from the balance of tan-
the film thickness only. Therefore, the normal stress balancegential forces as
at both of the lamella interfaces dr28,24]

2y4=0_+o,. + jh II;(hydh—h(Py (&) =P )+ h7gy.
|

20_
- P_‘f‘T +H|(h|):_PW+T”, (28) (32)
20, Here we useh/P, as a reference or background tension.
— ( P,.— R +II,(h)=—Py,+7,. (29 Substituting the differencéP,,(£) — P, ) from Eq. (29) into

Eq. (32), we arrive at the formula for dynamic tension

As follows from Egs.(28) and(29), the mean radiuR of
the lamella can be calculated from the ordinary Laplace
equation in the same manner as in equilibrium thermodyynereA, =g, — o
namics. The lamella tension and the pressure difference in The apove analysis demonstrates how the lamella rheol-
the Laplace equation should be treated as dynamic valueggy influences its dynamic tension. Thus, for a Newtonian
because they differ from the equilibrium values by anfyig, the 9 component of the stress tensor is a linear function
amount lost due to the lamella motion. The Laplace equatio the respective component of the extensional strain rate
gives the equation of motion for the individual lamella. If the e,,. Because of the fluid incompressibility, one heag=
radius R is expressed through 'ghe lamella chord radiys —e,—e,,. Therefore,7,, can be expressed through the
—p, the apparent contact angfeis found from film thickness and the lamella radius. In conclusion of this
subsection, it should be emphasized that all the lamella pa-
(30) rameters, such as its thickness, apparent contact angle and

2yg=2y+A_+AL (79— Tr), (33

sin ¢ P_—P,

(ro=p) 2(o-+oy)’ tension, are self-consistently connected with the wetting film
_ _ parameters.
The same system of equatio(@8) and (29) provides the (d) Pressure continuityThe lubrication approximation
following relation between the lamella thickness, disjoiningimplies that the pressure in the wetting fluid at the contact
pressure, and normal stress: line varies continuously, i.e., the equatioR|s_; o
N =Pylx=¢+0 holds. Making use of Eq(20), the desired
I (h)=3(P_+P,=2Py(&)+ 7 . 3D boundary condition is written as
At this step, the rheological model for the lamella is re- P —0 2H|y—¢ 0=P,— 0 2H|x—¢0- (34)

quired. It should be noted, however, that there is no conven-

tional rheological model for foam lamellae because the struc- (e) Mass balanceThe final two boundary conditions are
ture of the foam films remains enigmatic. The following given by the mass balances in the whole system lamella plus
possible structures have been suggested: a smecticlike strugetting film, and in the microelement of the moving bound-
ture [40,41], a cubic lattice of ordered micell¢d42], a fluid  ary. The former one depends on the mass exchange at the
with a specific exponential correlation functi¢a3], a bi-  ends of the capillary. For the latter one, consider the follow-
layer of surfactants with aqueous cde], and a gel-like ing analysis of infinitesimal mass variation. The lamella
structuref45]. Each of them requires an individual approachpasses the distanck during the time intervatit. The mass

to the rheology. Specific surface properties of the foam films:hange is(p —min(h_|,_,_..;h.|y_.))d&; on the other hand,
also dictate an additional modification of the rheological re-this change is the flow influgdt Therefore,

lations[46]. Therefore, it is difficult to designate specifically

the form of the normal stress. Nevertheless, quite a lot of . _ dg_
rheological laws permit the expression of the normal stress (p=min(h_|x ;P fx)) a_‘ﬂhb
7., in terms of the extensional strains ras=d In(h)/dt (35)

ande,,=d In(ro—p)/dt [47]. The normal stress;, can be

expressed then through the time derivative of the lamella
thickness and chord radius. For instance, assuming that th® similar procedure can be used for a derivation of the
lamella is deformed as a Newtonian fluid, we have the fol-boundary condition at the moving contact line even if the
lowing linear relation between the respective component ofamella squeezes a portion of liquid into the Plateau border.
the stress tensor and the extensional strain raig: The only modification concerns the integral mass balance;
= d In h /dt, where y, is the lamella viscosity. Thus the that is, we must either account for the fact that the total

qlx:§—0:q|x:§+0'
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liquid volume in the system “lamella plus wetting film” The mass balandé=g. (35)] reveals that the residual film
remains the same, or presume some law for fluid depletiorthickness and the film thickness at the right infinity are the
If we assume that the total mass is conserved, the followingame, i.e.,

additional constraint to the admissible crest height holds:

h®=h%=h,. 39
(h|2_77(ro—.00)2h|0) " 39
= ) ) ) Hence the lamella moves steadily only by virtue of the pres-
=7TJ [ro—(ro—h.(x)]=[rg—(ro—ho(x))°]dx, ence of the pressure difference in the liquid within uniform
o pieces of the lining film. This result justifies the hypothesis
(36) of Hirasaki and Lawsof5].

whereh|0 is the equilibrium thickness of the lamellag(x)

is the integral of Eq(2), pg is the height of the equilibrium

crest, and® denotes the area of moving lamella. Although the general analysis of the similarity solution
Thus, the free boundary problem is formulated in terms ofallows one to obtain a number of useful relati¢gs|s.(37)—

the wetting film thickness. Equationd9)—(36) must be (39)], it is still quite complicated and requires the application

combined with the boundary conditions at the ends of thedf numerical methods. More tractable analytical results can

wetting films. At the end where the film remains at rest, thebe obtained if we specialize the range of the input physical

film thickness has the well defined valbe («,t)=h,. At  parameters. Furthermore, introducing the pair gog) in

the same time, the thickness of the residual fiith at the ~ the same way as that is defined in E8), and rewriting Eq.

opposite end is unknown in advance, and has to be found. {87) as

seems reasonable to assume that all the spatial derivatives at

A. Classification of displacement regimes

both ends vanish, i.e., the wetting films tend to be flat at the _ Ca(h— h.)cosp.(h) _ d’cosp.(h) 1dIT
ends. Finalizing the statement, it should be noted that the h3\1—cos 82 (h) dh? o dh’
initial conditions depend on the scenario of loading. - (40)
IV. TRAVELING WAVE SOLUTION one can classify the solutions with respect to the range of

variation of the capillary number Ca. Note that we choose
To demonstrate the characteristic features of the modehe angles in Eqg40) by using their definition at the point
developed in Sec. lll, we analyze the traveling wave solutiorh=p (Fig. 3. Moreover, the change of variables can be ap-
of the form plied only if the functions cog.(h) vary monotonically.
Hence, parameter is positive for a receding meniscuss
h.(xt)=h.(s), s=x-Ut, +1, and it is negatived= — 1) if the profile of the advanc-

whereU is the velocity of the lamella propagation over the ing 'T‘e”iscus !s described by a mo.notonically decreasing
function[see Fig. 4a), top]. However, if the meniscus pos-

wetting film. This solution describes a steady motion of an ) 7 )
individual lamella over the prewetted pore, as well as a>¢SS€S an indentatigfrig. 4@, bottom, the profile of the
steady motion of théth lamella of a moving bubble train. advar?cmg meniscus must be described by two functighs
Since the lamella moves steadily, the viscous stresses disap?d By th_e first one is a qecreasmg function and the oth_er
pear, 7yy= 7, =7,,=0, provided that the lamella behaves ONn€ is an increasing function. In other words, the stepwise
like an ordinary liquid film. If the lamella is a liquid crystal, fu*nctlon e(h) can be Intrqdu*ced as followsi(h)=—1 if
the additional stresses should be specified. We restrict oup” <h=p, ande(h)=+1 if h*<hs<h.., provided that the
selves to the analysis of a fluidlike lamella, so that the dy-<critical thicknessh* must be found by matching both
namic tension %4 and the lamella disjoining pressure Pranches of the solution. Thus one cannot specify in advance
IT, (h;) are influenced by the viscous forces only implicitly. the form of the stepwise functioa(h), and an additional
The integration of the governing equations with respect t@nalyﬁs should be done in order to select a suitable Shape of

s leads to the equation the Plateau border. Mathematically, this means that it is nec-
essary to clarify a behavior of the functions gggh) at the
_ hidp, ends of capillanh=h.,.
—U(h.—hZ)= 3u ds (37 Due to the boundary conditions, the asymptotic behavior

of the solution can be described by the following general
in which the minus sign is associated with the left infinity, form: cosp.(h)~1—A.(h—h,) Substituting this anzatz
and the plus sign denotes the thickness of the advancinigto Eq. (40), one obtainsk=2, so that the linear term is
meniscus; index %" denotes the value of the respective absent. Parametefs. can be found from the equations
quantity at infinity. The integration of Eq37) results into

the following relation between the pressure drop and the 3Ca
lamella speed: IF,—:ui(uzi—l), A>0, (41)
+= h,—h? o h_—hZ
—3uU Tds-l— 7thdS =P,—P_. _ 3cCa )
(38) +(_T)3§=ui(ui+1), A <O, (42)
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FIG. 4. (a) The presence of an indentation in the advancing meni@iube bottom allows one to select the specific regimes of lamella
sliding. (b) Graphic solution of the cubic equatiga2). QS, HG, and Breth denote quasistatic, Hervet—de Gennes, and Bretherton regimes,
respectively(c) The ratios between advancing and receding inclination angles vs paramete¥?@ar different regimes of lamella sliding.

whereu, =h.\2A./\[A], and A=(—h?/o)dII/dh(h.).  anglesB.(h) at plus and minus infinity, provided that the

Paramete\ can be treated as the stability parameter. If it isapproximate equality3.~v2A.(h—h.) holds. The pecu-

negative, the film is thermodynamically unstable and break$arities in the behavior of the roots of the cubic equation

down into droplets. Otherwise, the wetting film exists classify the regimes. Explicitly, the growth rate of advancing

[16,39. angle B, /(h—h,)=+2A, is a convenient quantity to dis-
The analysis of the cubic polynomial equatiddd) and  tinguish the regimes. Below we consider only a “regular”

(42) reveals distinguishing regimes in the behavior of thecase of lamella displacement, when no indentation of the

wetting film during the lamella motion. Only positive roots receding meniscus occurs.

are physically acceptable. One can see that there is a unique Negative stability parameteiThe inclination angles be-

solution u_ associated with the plus sign on the left handhave identically,

sides of Egs(41) and (42). However, if the right interface

tends to its flat state from below, i.e., if the thickness in- gHo ) L 4512

creases at infinity, then, for the “plus” cosine, the plus sign * s . .

must be taken in the left hand side of E¢4l) and (42). (h—h.,) “h, [Al73 sml‘(§ arcsth CalA[*?),

Thus the disappearance of the roots, which is associated with

the minus sign in the left hand side of Eq4.2), can be

attributed to the presence of an indentation in the wettindut the advancing meniscus forms an indentation. In the

film ahead of the lamella. characteristic limit Ca/A|¥2—0, the linear term on the right
Hence the regimes of lamella sliding can be classifiechand side of Eq(42) dominates the quibic one. In other

according to the characteristic behavior of the inclinationwords, similarly to the Hervet—de Genn@4G) regime of
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wetting [48], the viscous and surface forces govern the flowHervet—de Gennes regime, and a quasistatic regime of mo-
pattern. Hence, the regime is called the Hervet—de Genndmon. Figure 4b) shows a scheme for selection of the respec-
regime. tive roots.

Positive stability parameteiThere are at least three pos- (i) Bretherton regimeBoth advancing and receding incli-
sible regimes of lamella sliding: the Bretherton regime, thenation angles behave identically,

Breth
+

2 ‘1 352
= —_ - 3/2
(h=h.) VA/3 co arcco% 5 Ca/A

- 3 + 277/3), (43)

but a distinguishing indentation at the advancing meniscus occurs. In the limiting cas&?Cad, the capillary and viscous
forces dominate the surface forces. Since Brethdrtdwas the first to consider a similar problem of bubble displacement, this
case is called the Bretherton regime of lamella displacement. Both the Hervet—de Gennes and quasistatic regimes may be
realized only in the range@Ca/A ¥°<2/3°2,
(i) Hervet—de Gennes regimé&.he growth rates of advancing and receding angles have the forms

HG 5/2
H 2 1 3
(h—ho~h. AI3 co{g arcco% -5 Ca/A 2 +477/3),
BpHe 2 1 3572
=— — JA/3 cog= arccos — — Ca/A%2|+2x/3].
(h—h,) __h 3 2

If parameter Cak®? is small, the surface and viscous forces dominate the capillary forces, so that the growth rate of the
advancing inclination angle can be estimateqﬂagl(h— h.)~3 CalAh, . At the same time, the rear meniscus tends to keep
its equilibrium shape. Consequently, the growth rate of the receding angle can be approximg&d(as-h..)~AY%h.,,
and there is a difference in advancing and receding angles. Figurehbws that the ratio of the respective growth rates may
be perceptible if parameter C&# tends to its critical value 27%.
(i) Quasistatic regimeln a quasistaticQS) regime of lamella sliding, the growth rates are expressed as

Qs 5/3
2 1 3
ik =— JA/3 coz(— arcco% -5 Ca/A3’2) )

(h—h,) h, 3
B° 2 1 352
h—ho~ h. A3 co 3 arcco —7C51//\3’2 +2m/3).

For Ca/A®?<1, the capillary and surface forces play a words, one expects that the viscous term in Ef) only
dominant role. A remarkable difference compared to theslightly alters the basic shape of the equilibrium Plateau bor-
Hervet—de Gennes regime concerns the growth rates of th@er. Therefore, the solution of EG0) can be represented as

advancing and receding angles that are identical to that of than asymptotic expansion in terms of the small capillary num-
Bretherton regimeBQY 825~ 1. However, an indentation at Per Ca. It should be stressed here that the presence of the

the advancing meniscus is absent. As parameteA &aap-  disioining pressure allows one to seek tagular asymptotic
proaches 2f2 the ratio 8% 825 decreases up th At this solution which is in contrast to the Brethertosingular
1 + -

point, the difference in the Hervet—de Gennes and quasistatasymIOtOtIC solutior(4,49). In the Bretherton solution, the

. i it ter &3F further i Qngularity with respect to Ca originates from a specific
regimes disappears. 1 parameter UMther INCreases,  matching of the spherical caps of equilibrium menisci with a
we inevitably achieve the Bretherton regime wi

: * uniform film. The classical formulation suggests the only
given by Eq.(43). possibility for the equilibrium coexistence of menisci and

Although the above classification seems to be clear, thgualls, namely, only contact with a dry wall is allowed. Con-
selection principle for the Hervet—de Gennes and quasistatisequently, any theory that neglects the surface forces en-
regimes remains enigmatic. In this paper we concentratgounters a problem in matching; one has to link a moving
solely on the analysis of the quasistatic regime of lamelldilm with menisci whose spherical caps at the wall form a
motion. finite contact angle. Thus to smooth out the angle that the
equilibrium meniscus forms with the wetting uniform film,
the theory should invoke a singular perturbation technique.
In the presence of equilibrium wetting film, one may use the

At low speeds, the displacement can be classified as quardinary perturbation theory, because the shape of the mov-
sistatic. In this regime, the film profile is governed almosting Plateau border is compatible with its basic equilibrium
entirely by the capillary and disjoining pressures. In otherprofile.

B. Quasistatic motion
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We seek the asymptotic solution in the form ¢gbgh)  vertex to rotate, but the radius of lamella rim keeps its equi-
=cospB(h)+Cav. . In order to guarantee that the secondlibrium value. It can be checked by the direct substitution of
term is smaller than the first one, the following applicability the solution into Eq(36) that the wetting film does not lose
condition is prescribed its mass, and no extra mass comes from the lamella.

Thus, during its slow creep, the lamella slightly bulges to
form a hemispherical sail, with the radius being inversely
proportional to the lamella velocifyegs.(30) and(48)]. The
physical parameters of the contact line—the lamella tension,
The principal term cog(h) was found in Sec. Il. For the first the rim radius, and the lamella thickness—altogether retain
term proportional to the capillary number, we have the fol-their equilibrium values.
lowing equations:

3/2
Cas(———) <1 (44)

2 V. DISCUSSION AND CONCLUSIONS
(h—hx)cos,B(h)_ dov.

hV1—cogB(h) =T an? (45 The results presented in this paper point directly to the
critical question of how the substrate wettability influences
the lamella friction. In our theory, the wettability conditions
are expressed through specific disjoining pressure isotherms.
Because of a rather wide spectrum of admissible disjoining

Taking into account the behavior of the solution at the poin
h=h.,, the solution to Eqs(45) can be written as

h (h—t)(t—h.,)cos B(t) pressure _isotherms, one can imagine a_variety of _displace—
v.==* 3 dt. (46) ment regimes, depending on the wetting film thickness.
h.  t3/(1-cogB(t)) Among the family of isotherms, specific foaming agents

) i i i somehow select acceptable isotherms, so that the frothing
Using this solution, one can express all the physical paramgg|tions can be classified relatively to their wettability of
eters. In partlcglar, accounting for E(4), the relation be- the given substrati88,50. The foaming agents are made of
tween the applied pressure drop and the lamella speed takgSyiytyre of several surfactants, and the mother liquid used
the form of the Newtonian friction law is not pure. Therefore, the real situation is quite complicated.

Usable literature results are sparse, and they collect disjoin-
AP=P,—P+=6,uUjp0 (t—hs)cos5(1) . (47 ing pressure isotherms for either free or wetting films. A
h. t3\(1—cosB(t)) usual model foaming system is a water solution of sodium
dodecyl sulfate(SDS with a sodium chloride additive,
The angle between the hemispherical lamella and the chor@hose wettability with respect to quartz and foaminess are
also depends linearly on the lamella speed; the followingvell documented27,36,41. Since SDS is an anionic surfac-

formula holds: tant, the behavior of the corresponding foam films is deter-
mined by the competition between the attractive van der

_3(rg—=po)ulU [ro (t—h,)cosp(t) Waals forces and the repulsive screened Coulomb forces due
= 20 fhw 31— coB(1)) t 48 {5 the dissociation of ions from the amphiphilic molecules

[16,51]. Churaev and Zorif36] showed that for film thick-
Therewith, the balance of forces at the contact line, E2f).  nesses of about 100 nm and surfactant concentrations below
and (27), requires one to make the correction to the contacthe critical micelle concentration, electrostatic interactions
angles in the fornB. (p) = Bo+ BL, where dominate. Therefore, the disjoining pressure isotherm can be
- approximated by the Derjaguin-Landau formulal
L =Ap, /h?, with A ~10 2-10"** Jm 2 Taking into ac-
Bz==* (__ ) . count that the presented theory may be applied if and only if
inequality (44) holds, one can reformulate the validity con-
Since the angles differ only in sign, the boundary conditionglition for the theory as
(24)—(25) serve as the solvability condition. From the latter,

N . 2A 3/2
the friction force is found as Cas( DL) <1
oh,,
E—equ [ Y(ro—po) _t)
fr = OH h, 20 (Po In this range of capillary numbers, the leading order term of
asymptotic expansion with respect &= Ap, /oh,, can be
t—h,)cos B(t calculated agsee the Appendijx
X (3 Jcos A dt. (49 PP
t \/(1_CO§ ,B(t)) (20_)3/2 1

AP~Ca——7— .
The reminder of unused boundary conditions reveals that Alpf E’i

the lamella maintains its thickness unchanged during the

stretching. In other words, the deviation of the lamella thick-For example, if the film thickness is of the order of 100 nm,
ness relative to the equilibrium thickness is at least one ordeand if the surface tension is of the order of 30 mN/m, the
smaller. The lamella tension is also maintained at its equilibpressure drop is Cal0’ Pa. On the other hand, the range of
rium level, and the height of the Plateau border crest remainadmissible capillary numbers lies within the interval Ca
the same. Hence the first order approximation allows thes10 °-10 “. Therefore, if Ca=10 *, the applied pressure
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drop must be of the order of $@Pa, that is a value near the ~ Three limiting regimes of the lamella friction are found.
capillary pressure, under which a single lamella created fron®nly for one of them is the friction proportional to the
a dilute solution breakg27]. Hence one may expect that the lamella velocity; for two others, the friction is non-
lamella most likely disappears before it reaches a stationarjfewtonian(Hervet—de Gennes and Bretherton mogéelhie
regime of motion. Bretherton regime selects a unique film. The lamella can
If the dispersion forces are responsible for the film stabil-propagate steadily if and only if the thickness has a certain
ity, a similar calculation can be performed for the van dervalue. Furthermore, there are no other traveling wave solu-
Waals isotherms of disjoining pressufé=A,q4y/h. In the  tions[15].
leading order approximation with respect to the parameter For the problem of a bubble displacemdn#,30, the

as=Aqw/oh?, the applied pressure drop can be expresseéicreasing of the displacement speed reduces the apparent
as(see the Appendjx contact angle between the substrate and bubble interface un-

til the angle eventually reaches zero. As a result, a visually
2 1 detectable film is deposited independently of the surface wet-
AP~6(3""~In(2+3 ))CaATz_- tability. One may expect that a similar change of the motion

vaw regimes occurs for a foam lamella. However, the mechanism

Although the pressure drop does not depend on the filn®f transition between the quasistatic, Hervet—de Gennes, and
thickness explicitly, the connection can be established byretherton regimes still remains an open question. A detailed
means of Eq(44). Thus experimental analysis of foam motion in smooth capillaries

at low capillary numbers could clarify the situation.

3/2

3AvdW 3/2
Cas > <1.
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A moving lamella is very sensitive to environmental con- APPENDIX
ditions; the fact that the lamella is thermodynamically stable ) ] ) o
at rest does not imply its stability in motion. The experimen- [N practice, the customary approximation of a disjoining
tal observation of the effect of dynamic coarsening of foamgPressure isotherm isl(h)=A,/h". Here we present some
in porous media was reported by Khatib, Hirasaki, and Falld/seful formulas obtained for any disjoining pressure iso-
[52]. However, no explanation of this phenomenon was protherm of such a form with an integee=2. In particular, Eq.
posed in the literaturél,2]. Our analysis suggests that the (17) becomes
dynamic coarsening effect is caused by anomalous friction of

each individual lamella under, from the thermodynamic ;o g1, _ ay ((h/h.)"(n—1)—n(h/h.)""*+1 1
point of view, critical conditions. If the hydrodynamic con- n—1 (h/h)" 1t '
ditions are limited to the quasistatic region, the principal fac- (A1)

tors that affect the apparent viscosity of lamellae in uniform

capillaries are thermodynamic ones. Viscous, capillary, andvhere a,=A,/ohl ™. Using boundary conditioril1), ay,
surface forces altogether modify the Plateau border intercan be expressed in terms of the crest height and inclination
faces that are deformed against the restoring force of thangle:

surface and lamella tensions. However, if conditidd) is

satisfied, the friction force is determined solely by the shape _ (1—cospBg)(n—1) A2)
of equilibrium menisci. Since the Plateau border spreads n (po/h.)(N—1)—n+(pg/he)t ™
over rather a large distan¢gee Sec. )| the resulting viscous
dissipation is anomalous. Substituting Eq(A1) into Eqg.(18), one can obtain
n—1\¥2rt  g(h)
x(t)=<—an ) N Wh—1 dh

1\ 12 n—1\12 (t
=(—a ) hw(ga)ln(t—hx>—g<po>ln<—hx+po>)—( . ) g’ (W)in(—h,+h)h,dh,
n Po

n

where
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- ncinl ((h/h..)"(n—1)—n(h/h..)""*+ 1)+ (h/h,)" "1
g(h)= . _ -
{(Z(h/hw)“l— n_”l (h/h)"(n—=1)—n(h/h)" " +1) IZO (I+1)(h/hw)'}

For h—h.,, one hasx(h)=/poh../(1—cosBy)n In(/h,,—1). Hence, the size of the transition region can be estimated as

| i~ Vpoh.. /(1—cosBo)n.
For smalle,, in the leading order the Plateau bordlEqg. (18)] can be approximated as

n—1
X<”2(z—%)

llzft 1 (h/hw)(n_l)/z

hih,—1) [ 2
ro : (IZO (I+1)(h/hw)')

2 dh. (A3)

Similarly, in leading order with respect @, , the first correction in the asymptotic solution for the inclination angtes
(46)] is

n—1\Y2rn (h—t)(t/h,—1)(t/h,) """
v.=*+3 f > = (A4)
2ay h. h2\(t/h,)"(n—1)—n(t/h,,)""1+1
The relation between the applied pressure drop and the lamella gpge@?7)] can be represented as
n—1\Y2 = (t/h,—1)(t/h,) """
AP=6 Cao| 5— f 5 = dt (A5)
2ay h. h2\(t/h,)"(n—1)—n(t/h,)""1+1
and Eq.(49) is rewritten as
n—1\Y2 yry (> t/h,,—1)(t/h,)("~ 71"
F,=3Cac ) Yo > ( )(t/h.) (A6)
200 o Jh. h2y(t/h,)"(n—=1)—n(t/h,)" " 1+1

Consider two physically justified examples of the disjoining pressure isotherm of the type under consideration. If the
electrostatic interactions dominate others, and, moreover, the Derjaguin-Landau approximation is responsible for the disjoining
pressure, one has=2 and A,=Ap, . Equation(18), that describes the profile of the Plateau border, can be explicitly
integrated to give

1/2
+

1/2
— hh,.—(h—h,)?
an

— 2 h h 2
X== a_2p0 »~(po—he)

L h hohe b V2R ap(hoh)%thoth
n n ,
\/2&2 pO_hOO \/2&2 sz/Zpoh@—az(po—hw)zﬁ-hw-l-po

wherea,=Ap, /oh,, . Using Eq.(A2) with n=2, equation for profile of the Plateau border can be rewritten in terms of the
measurable parametesg, h.,, andB,. If cos By=1, the solution is identical to the solution found by Neimark and Kheifetz
[32] for profile of the meniscus in a slot. In the general caseByesl, the first correction proportional to the capillary number
[Eq. (46)] becomes

3 ay(h+h,)—h

V2ashh,.—a3(h—h.)%—

el
26{2 hooaz

YTV a2hn,
3(1 h/hoo+1 _ h+(h—hm)a2+3 ) az(h—hw)—hw+3(1 h o _ 1
-3 = arcsin———— arcsin = arcsin——.
2 af hy2ay+ 1 h.y2as+1 2 h..a} V2a,+1
The relation between the applied pressure drop and the lamella speed takes the form
Caoc [« —h,)—
AP=3:— 2o 2 [=po V2azpoh..— a5(po—h..)?+ 2“2)
h..a3 Po
3C30' ( . poT ax(po—h.) . 1
— arcsin arcsin ,
hxag po\/2a2+1 \/2a2+l
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and the friction force is given by

where
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f=[(y(ro—po) —2pe0)(a2(po—h.) —po) —4oazpoh..]

% \/Zazpohoo_ ag(Po— h..)?

4 @(y(ro—po) —20(pg—2h,ay))

I
. potax(po—h.)
—(Y(ro— po) — (2po+ 4a3h..) o)arcsin—————
7( 0 Po) ( Po 2 ) po\m
+(y(rg—po) — 20(po+ 4h az))arcsin;—4a2h aarcsinaZ(pO_—h“J_hoo
o e 0T Va1 27 ho\2ay+ 1

The second example concerns the films stabilized by the Lifshitz—van der Waals forces. If the dispersion forces dominate

others, the isotherm of disjoining pressure has the fokmA, 4y /h3. Though the problem cannot be integrated explicitly,

asymptotic Eqs(A3)—(A6) yield, respectively,

x=a3 "A\2h+h,—\2po+ hoc)(

Po v2 a,]_/z pOhOO
(1—cos By) 8

1/2
(1—cos ﬁo))

y 1 h—h,, | v2h+h,++3h,
P n ,
V3 po—h 2po+h..+/3h..

\/§h—\/(2h+hw)hw+

2(h+hw) | Jho+(2h+h.)
n

VtziSa:;l/z( h
oo

AP 6Ca
=6

h.. (1+v3)vh

T a3 Y33 -In(2+v3)),

—12 Mo Y
Ffr:Ffr:3 Ca0'a3 _; (\/j_ln(2+\/3)),

h

whereas=A,gy/oh?.

s

[1] A. R. Kovscek and C. J. Radke, Fobams: Fundamentals and
Applications in the Petroleum Industryedited by L. L.
Schramm, Advances in Chemistry Series Vol. ZA2nerican
Chemical Society, New York, 1994pp. 115-164.

[2] W. R. Rossen, ifFoams: Fundamentals and Applicatioresi-
ited by R. K. Prudhomme and S. A. KhafDekker, New
York, 1995, Vol. 57, pp. 413-464.

[3] R. Dautov, K. Kornev, and V. Mourzenko, Phys. Rev5E
6929 (1997).

[4] F. P. Bretherton, J. Fluid Mech.0, 166 (1961).

[5] G. J. Hirasaki and J. Lawson, Soc. Petr. Eng.28, 176
(1985.

[6] A. H. Falls, J. J. Musters, and J. Ratulowski, SPE Reservoir

1895(1995 [ibid. 80, 1049(1995].
[8] M. P. Ida and M. J. Miksis, SIAMSoc. Ind. Appl. Math. J.
Appl. Math. 55, 23 (1995.
[9] L. W. Schwartz, H. M. Princen, and A. D. Kiss, J. Fluid Mech.
172, 259(1986.
[10] Liquid Film Coating edited by F. Kistler and P. M. Schweizer
(Chapman and Hall, London, 1997
[11] E. Herbolzheimefunpublished
[12] H. C. Chang and J. Ratulowskinpublishegl
[13] J. D. Chen, J. Colloid Interface Sdi09, 34 (1986.
[14] G. F. Teletzke, Ph.D. thesis, University of Minnesota, 1983.
[15] J. Ratulowski and H. C. Chang, J. Fluid Mechl0, 303
(1990.

Eng. 4, 55(1989; J. Ratulowski and H. C. Chang, Phys. Flu- [16] B. V. Derjaguin, N. V. Churaev, and V. M. MulleSurface

ids A 1, 1642(1989.
[7] K. G. Kornev and V. N. Kurdyumov, Zh. Eksp. Teor. Fi06,
457 (1994 [JETP 79, 252 (1999]; K. G. Kornev,ibid. 107,

Forces(Consultants Bureau, New York, 1987
[17] B. Frank and S. Garoff, ibynamics in Small Confining Sys-
tems Symposium held November 28—December 1, 1994, Bos-



PRE 58

THERMODYNAMIC AND HYDRODYNAMI C.. ..

7619

ton, MA, edited by J. M. Drake, J. Klafter, R. Kopelman, and [34] N. V. Churaev and Z. M. Zorin, Adv. Colloid Interface SéD,

S. M. Troian(Materials Research Society, Pittsburgh, 1995
pp. 39-51.

[18] E. M. Lifshitz and L. P. PitaevskiiPhysical Kinetics(Perga-
mon, Oxford, 1981L

[19] J. Stavans, Rep. Prog. Phys6, 733 (1993; J. J. Bikerman,
Foams(Springer-Verlag, New York, 1973

[20] K. T. Chambers and C. J. Radke, linterfacial Phenomena in
Petroleum Recoveryedited by N. Morrow (Dekker, New
York, 1990, p. 191.

[21] K. Kornev, A. Neimark, and A. Rozhkotnpublished

[22] J. Roof, Soc. Petr. Eng. 10, 85(1970; D. H. Everett and J.
M. Haynes, J. Colloid Interface ScB8, 125 (1972; L. I.
Kheifets and A. V. NeimarkMultiphase Processes in Porous
Media (Khimia, Moscow, 1982

[23] K. K. Mohanty, Ph.D. thesis, University of Minnesota, 1981.

[24] I. B. Ivanov and P. A. Kralchevsky, iiThin Liquid Films:
Fundamentals and Applicationsdited by I. B. Ivano\Dek-
ker, New York, 1988 pp. 49-130.

[25] D. Exerowa, I. B. Ivanov, and A. Scheludko, Research in
Surface Forcesedited by B. V. DerjaguiriNational Bureau of
Standards, Washington, DC, 1964. 144; B. V. Toshev and
I. B. lvanov, Colloid Polym. Sci253 558(1979; Z. M. Zorin,
D. Platikanov, N. Rangelova, and A. Scheludko,Sarface
Forces and Liquid Boundary Layergdited by B. V. Der-
jaguin (Nauka, Moscow, 1983 p. 200.

[26] Thin Liquid Films: Fundamentals and Applicationd&ef.
[24)).

[27] D. Exerowa and Kruglyakow;oam and Foam Film¢Elsevier,
Amsterdam, 1998

[28] A. V. Neimark and M. Vignes-Adler, Phys. Rev. &, 788
(1995.

109 (1992.

[35] J. R. Philip, J. Chem. Phy$§6, 5069(1977.

[36] M. Kagan and W. V. Pinczewski, J. Colloid Interface S80,
293(1995.

[37] K. J. Mysels, K. Shinoda, and S. Frank8hap Films, Studies
of their Thinning and a BibliographyPergamon, New York,
1959.

[38] B. Levich, Physicochemical Hydrodynamic$rentice-Hall,
Englewood Cliffs, NJ, 196R

[39] P. G. de Gennes, Rev. Mod. Ph{g, 827 (1985.

[40] J. W. Keuskamp and J. Lyklem&dsorption at Interfaces
edited by K. L. Mittal, ACS Symposium Series Vol (8meri-
can Chemical Society, Washington, DC, 1975 191.

[41] V. Bergeron and C. J. Radke, Langm8ir3020(1992.

[42] A. D. Nikolov, P. A. Kralchevsky, I. B. Ivanov, and D. T.
Wasan, J. Colloid Interface Sci33 13(1989.

[43] O. Krichevsky and J. Stavans, Phys. Rev. Lé, 2752
(1995.

[44] O. Belorgey and J. J. Benattar, Phys. Rev. Léf, 313
(1992); S. E. Friberg, Langmui8, 1889(1992.

[45] B. Cabane and R. Duplessix, J. Ph§srance 48, 651 (1987);
S. Lionti-Addad and J. M. Meglio, Langmu@, 324(1992; R.
Bruinsma, J. M. Meglio, D. Quere, and S. Cohen-Addbiti.
8, 3161(1992.

[46] J. LucassenAnionic Surfactants—Physical Chemistry of Sur-

factant Action edited by E. H. Lucassen-Reynders, Surfactant

Science Series Vol. 1(Dekker, New York, 198], p. 217; D.
A. Edwards, H. Brenner, and D. T. Wasdnterfacial Trans-
port Processes and RheologButterworth-Heinemann, Bos-
ton, 199); J. B. Fournier, Phys. Rev. Leff5, 854(1995; J.

C. Earnshaw and D. J. Sharpe, J. Chem. Soc., Faraday Trans.

92, 611(1996.

[29] J. A. de Feijter and A. Vrij, J. Electroanal. Chem. Interfacial [47] H. A. Barnes, J. F. Hutton, and K. Walte#sn Introduction to

Electrochem37, 9 (1972.

Rheology 2nd ed.(Elsevier, Amsterdam, 1993

[30] G. F. Teletzke, H. T. Davis, and L. E. Scriven, Rev. Phys.[48] H. Hervet and P. G. de Gennes, C. R. Acad. Sci. UR24I,

Appl. 23, 989(1988.

[31] B. V. Derjaguin, V. M. Starov, and N. V. Churaev, Kolloid.
Zh. 38, 875(1976; F. Renk, P. C. Wayner, and G. M. Homsy,
J. Colloid Interface Sci67, 408 (1978.

[32] A. V. Neimark and L. I. Kheifetz, Kolloid. Zh. USSR3, 500
(1981.

[33] I. B. Ivanov and D. S. Dimitrov, inThin Liquid Films: Fun-
damentals and ApplicationdRef. [24]), pp. 379-496.

499 (1984).

[49] C. W. Park and G. M. Homsy, J. Fluid Mech39, 291(1984).
[50] Foams: Fundamentals and Applicatignsdited by R. K.
Prud’homme and S. A. KhafDekker, New York, 199b
[51] J. Israelachvilijntermolecular and Surface Forc¢écademic,

London, 1992
[52] Z. I. Khatib, G. J. Hirasaki, and A. H. Falls, SPE Reservoir
Eng.3, 919(1988.



