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Thermodynamic and hydrodynamic peculiarities of a foam lamella confined in a cylindrical pore
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The paper investigates a specific behavior of foam films: lamellae confined in a cylindrical prewetted pore.
Since both the lamella and wetting film are ultrathin~,100 nm!, classical thermodynamics is generalized to
account for the effects of intermolecular forces. The conditions of coexistence of a lamella and wetting films
are established. The problem of lamella motion is considered as a free boundary problem. The theory predicts
three sliding regimes, depending on the priority of viscous, long-range surface, and capillary forces. At low
speeds, the long-range surface, and capillary forces dominate the viscous one. The friction force acting on the
lamella is then proportional to the speed. The pressure drop required to keep the lamella moving can be of the
same order of magnitude as the critical pressure drop for lamella rupture.@S1063-651X~98!07112-8#

PACS number~s!: 82.70.Rr, 68.10.2m, 68.90.1g
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I. INTRODUCTION

The problem of foam transport in porous media has
ceived a great deal of attention in the previous decades
to the unique ability of foams to reduce the gas flux throu
the medium@1,2#. Two main mechanisms of this reductio
have been proposed. The first is attributed to a specific ac
of the capillary forces, which leads to the blockage of the
paths by the foam films~or lamellae!. As a result, the per-
meability to gas is reduced up to several orders of magnit
compared to that for the corresponding gas-liquid sys
without a foaming agent. In addition to a reduction of t
permeability, foams radically change the rheological beh
ior of the gas phase@1–3#. The conventional point of view
on the effect originates from a work by Bretherton@4#, in
which he explained the mechanism of the nonlinear frict
of a bubble as a result of the competition between the ca
lary and viscous forces. In particular, he showed that
expected extra-pressure dropDP additional to the Laplacian
capillary pressure, increases with the bubble speed to t2

3

power. Hirasaki and Lawson@5#, and some others~e.g., Refs.
@1,6#!, applied the Bretherton approach to bubble train m
tion through smooth capillaries and bead packs. They
sumed, though implicitly, that the foam flow is similar to th
motion of a hypothetical single-phase system. Thus the j
motion of the gas, liquid slugs separating the isola
bubbles, and the wetting film coating the pore walls is trea
by means of the so-called pseudohomogeneous Darcy
model that prescribes ana priori relation between the ap
plied pressure gradient and the resulting flow rate. Wit
this approach, there is no relative motion of foam lamell
and every bubble moves in unison with others. However,
average velocities of different phases can be distinguish
In particular, the steady velocity of the gas bubble is de
mined by the average velocity of the faster flowing fluid ne
the center of the lamella~or liquid lens!. Then the volume
swept out by a long bubble moving at a constant speedU can
be estimated by the product of the average speed of the
uid and the cross-sectional area of the lining film. The e
mation reveals that the average speed of the wetting flui
less than the bubble velocity, even though the differenc
PRE 581063-651X/98/58~6!/7606~14!/$15.00
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slight. The reduction in apparent gas viscosity, however,
be significant because the viscosity of the wetting fluid
much larger than that of the gas.

The other model of the foam flow through a capillary
based on the wavelike motion of lamellae@7#. For each
lamella in the train, the physical picture of the flow r
sembles a flow generated by a sail boat. Thus the mod
called the sail boat model. The lamella draws a meniscus~the
Plateau border!, so that a lubrication flow occurs within bot
the meniscus and the respective wetting films. The lam
serves as a sail, thus forcing the wetting film to move. Sim
larly to the Bretherton scheme, the main flow patterns
concentrated within the wetting film. However, the lame
thickness, its radius of curvature, and the lamella tens
may depend on the changes within the wetting film. The
fore, the law of lamella motion cannot be predicted in a
vance, since collective phenomena drive the dynamics
each lamella. Lamellae can move steadily only under cer
restrictions on pressure distribution within the train.

The above described schemes of foam friction seem
operate with different objects; the first one deals with t
bubble as a whole, while the second one treats each lam
independently. However, from the mathematical point
view, both schemes deal with foam lamellae rather than
discrete bubbles. In spite of the sufficiently conventional
vision, the distinctions should be stressed, because they
ply different mechanisms of foam transport in porous med
In particular, the first scheme is implicitly associated w
the creep of the bubble train as a whole, while the sec
treats the foam motion as a wavelike displacement of lam
lae in caravans.

The main goal of this paper is to clarify the nature
lamella sliding through a smooth capillary. Though in earl
papers one of us put forward the physical idea underlying
sail boat model@7#, no mathematical formulation has bee
presented. To our knowledge, the only work that utiliz
elements of the sail boat model is that presented by Ida
Miksis @8#. However, they were interested in the lame
thinning phenomena, and postulateda priori the linear New-
tonian friction law for the lamella. The present study
aimed at the physical picture of the lamella slippage.
7606 © 1998 The American Physical Society
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The relative intensity of viscous and capillary forces c
be expressed in terms of the capillary number Ca5mU/s, in
which m is the fluid viscosity,U is the lamella velocity, and
s is the surface tension. In most applications, the values
the capillary number are very small; for example, assum
that the typical seepage speed isU'1 cm/day, one obtains
Ca'1028 for aqueous foams withm'1023 Pa s, s
'0.03 N/m. We confine ourselves to this case in the pres
paper. It is a known fact that the Bretherton theory is una
to reproduce the characteristic feature of the wetting fil
dynamics in this range of capillary numbers@4,9,10#. Be-
cause of the mathematical similarity of the Bretherton pr
lem and the problem of lamella motion, one may expec
discrepancy between the theory and experimental data on
lamella resistance. Actually, Hirasaki and Lawson@5# dem-
onstrated experimentally that even in the range of capill
numbers appropriate for the Bretherton theory, the pres
drop per foam bubble is about one order of magnitude lar
than that predicted by the theory. They attributed this d
crepancy to the effect of the surface tension gradient tha
caused by a specific redistribution of the surfactant over
interface. Later on, this hypothesis was assessed theoreti
by Herbolzheimer@11# and Chang and Ratulowski@12#.
They assumed the solution to be dilute, and obtained an e
pressure drop only 42/3 times the Bretherton expressio
Therefore, the anomalous extra pressure drop observe
Hirasari and Lawson cannot be explained by the surface
sion gradient only.

Although the scope of the reasoning for the discrepa
between the Bretherton theory and his experiment on a si
bubble has been extended, all the explanations have alw
been attributed to the ordinary lubrication approximatio
The explanations include wall roughness@13#, instability of
the meniscus@4#, and adsorbed impurities@4,14,15#.

Teletzke@14# was the first to point out the significance
long-range molecular forces when the meniscus extends
film of a very small thickness~1 mm or less!. He treated the
displacement of an individual bubble in a quasistatic regim
and augmented Bretherton’s theory by including the disjo
ing pressure that serves as a force per unit area addition
ordinary pressure@16#. The concept of disjoining pressur
allows one to use conventional hydrodynamic variables a
at the same time, to account for double-layer electrost
forces and the like inherent to an ultrathin film. Teletz
resolved Bretherton’s enigmatic assertion that the thickn
of the deposited film is independent of the substrate we
bility and diminishes as the capillary number approac
zero. In particular, he showed that the film thickness lev
off to an equilibrium value at the limit of negligibly sma
capillary numbers. Chen@13# confirmed Teletzke’s predic
tion by measuring the thickness of film surrounded by
bubbles and oil drops in water. We select the case of ul
thin wetting films, because of its basic importance in t
treatment of the problem of the foam friction at very lo
speeds.

The foam resides in a porous medium as a gas-liquid m
ture: a continuous liquid phase wetting the rock and the
that is made discontinuous by lamellae. The wetting films
the pore walls of varying curvature link the menisci in t
corners of cusped pores, hence the films are forced to ha
varying thickness in order to balance the capillary press
of
g

nt
le
s

-
a
he

y
re
er
-
is
e
lly

tra

by
n-

y
le
ys
.

a

,
-
to

d,
ic

ss
a-
s
ls

r
a-
e

-
s

n

e a
re

by their disjoining pressure. If the rock is not wetted, t
liquid phase is accumulated at the pore corners or fo
discrete droplets. However, this situation is rare, since
presence of surfactant improves the wettability@16,17#. Thus
we consider only wet capillaries.

In Sec. II, we discuss thermodynamic peculiarities of fre
standing lamella. Because of its unique structure, the lam
serves as a thermodynamic phase; therewith, it senses
happens in the wetting film. As a result, in confining syste
such as pores, the conditions of equilibrium coexistence
an individual lamella and the wetting film prove to be sp
cific. The thermodynamic model is further generalized to
count for the hydrodynamic feature of the lamella motion.
Sec. III, we formulate the sail boat model of lamella slidin
Then we consider a traveling wave solution in Sec. IV. T
solution possesses a rather wide spectrum of admissible
gimes of lamella motion. The regimes depend on the prio
of the forces that influence the lamella motion. In the regi
of small capillary numbers, the shape of the Plateau borde
almost entirely controlled by the capillary and surface forc
This is the so-called quasistatic regime of lamella creep
accordance with the ordinary approach to the calculation
the transport coefficients@18#, we are interested in small per
turbations of the thermodynamic characteristics of the w
ting film. We show that the lamella velocity depends linea
on the pressure drop across the lamella. The friction coe
cient is affected by the physicochemical properties of
pair ‘‘wetting film plus substrate’’ via the disjoining pressu
isotherm.

II. WHY A LAMELLA DIFFERS FROM A LENS.
FREE-STANDING LAMELLA

Prior to analyzing the mechanism of lamella friction, w
briefly review the thermodynamic conditions that elucida
the distinction between a lamella and liquid lens. The ana
sis of the lamella equilibrium in a bulk foam is well known
and it has an elegant solution in the form of Plateau’s l
@19#. However, the simple case of a lamella spanning a w
ted pore appears to have been nondeveloped. At the s
time, such a case could clarify the role of substrate wetta
ity and its influences on the foam stability.

To explain the distinctions between a lamella and liqu
lens, it is useful to recall general micromechanical feature
the lamella formation@20,21#. A foam lamella forms in two
stages. The first one is the creation of a lens. The wet
film coating the capillary snaps off and transforms into a le
when the film thickness exceeds a certain value@22,23#.
Then, under the Laplacian capillary pressure, a lens sque
liquid away until its interfaces touch each other. At this m
ment, a lens that contains a pure liquid immediately dis
pears. However, if a surfactant is present, a lens with adj
interfaces can be stable. A stable lamella may form as
result of the transition from the bulk solution to an intere
ing thermodynamic state. Owing to the effects of the lame
disjoining pressureP l(hl), the effective tension 2g of a
lamella differs from the sum 2s of the tensions of its two
interfaces with the surrounding gas. Thus the tension has
form @16,24#.
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7608 PRE 58KONSTANTIN KORNEV AND GALINA SHUGAI
2g52s f1P l~hl !hl52s1E
hl

`

P l~h!dh1P l~hl !hl ,

~1!

wheres is the ‘‘bare’’ surface tension, ands f is the effec-
tive surface tension.

The force balance at the junction between the Plat
border and lamella thus requires a finite contact angle@25#.
The contact angles are typically small, ranging from som
what less than 1° to a few degrees~see, for a review, Refs
@26, 27# !. It is recognized, however, that they are responsi
for the patterning in bulk foams@28#. The question naturally
arises to what extent the substrate wettability influences
equilibrium property of a lamella.

To clarify this question, we consider the somewhat si
plified thermodynamic model of the lamella formation. O
basic hypothesis is that the characteristic height of the
teau border is much greater than the characteristic size o
transition zone between the lamella and meniscus~Fig. 1!.
Usually, the pore sizer 0 is of the order of 100mm, and the
transition zone between the flat lamella and Plateau bord
assessed asl;1 mm @29#. Therefore, the contact condition
of the lamella and meniscus can be modeled by introducin
sharp contact line with the associated contact anglep
22b0 , at which liquid-air interfaces meet@25#. In the fol-
lowing treatment, we consider the so-called regime
pseudopartial wetting @16,30#. The regime is termed
‘‘pseudo’’ because the solid is completely coated with a fi
of the thicknessh, but, at the same time, the meniscus cou
form a finite apparent contact angle. Since the radius of
tion of the lamella is small compared with the height of t
Plateau border, we assume that the wetting film senses
the disjoining pressure caused by the substrate. An ana
of the equilibrium condition for pores comparable with t
thickness of transition zone (r 0; l ) is beyond the scope o
our paper.

The equilibrium shape of the meniscus, for example, of
left branch can be obtained by integrating the augmen
Young-Laplace equation

sh9

~11h82!3/21
s

~r 02h!~11h82!1/25Pg2Pw2P~h! ~2!

together with the boundary conditions

FIG. 1. Free-standing lamella confined in a cylindrical capillar
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h8ux52`50 ~3!

at infinity, and

h8ux5205tan b0 ~4!

at the contact line.
In Eq. ~2!, Pg and Pw are the gas and fluid pressure

respectively,P(h) is the disjoining pressure,s is the surface
tension, and a prime denotes the derivative with respect tx.
At infinity, we have a uniform film of the thicknessh` .
Hence the following equation holds:

s

~r 02h`!
1P~h`!5Pg2Pw . ~5!

The contact angleb0 cannot be presumed as a physical co
stant, since it is affected by the capillary pressure. More p
cisely, the force balance at the contact line, where the lam
meets the meniscus, takes the form

2s sin b052g52s1E
hl

`

P l~h!dh1P l~hl !hl . ~6!

Sometimes, the equation is modified by adding a term wit
line tension@25,29#. The model with a line tension is aime
at implicit consideration of the effect of the transition zo
between the meniscus and flat lamella. The transition zo
however, can be correctly taken into account by the te
nique of matching asymptotic expansions@31#. We focus on
the transition zone between the meniscus and wetting fi
because it plays the key role in hydrodynamics. In the th
modynamic equilibrium, the disjoining pressure in th
lamella equals the capillary pressure

P l~hl !5Pg2Pw5
s

~r 02h`!
1P~h`!. ~7!

Hence the contact angle senses what happens in the we
film far from the contact line.

The equilibrium shape of the meniscus can be found
plicitly by expressing the Young-Laplace equation via t
cosine of the current inclination angle of the profile@32#

cosb~h!5~11h82!21/2. ~8!

Then Eq.~2! takes the form

2
d cosb~h!

dh
1

cosb~h!

~r 02h!
5

Pg2Pw

s
2

1

s
P~h!, ~9!

and the boundary conditions~3! and ~4! give

cosb~h`!51, ~10!

cosb~r0!5cosb0 . ~11!

Integrating Eq.~9! together with the boundary condition
~10! and ~11!, we arrive at the formula for the crest heigh



l

n
c

he
al
n
g

e,
th
s
, a
as
f
u

er

uc
ll
he
b

re-
le,

he

u
ns

hat
ic
b-
the

ns
p-

ng

ed
s
r is

PRE 58 7609THERMODYNAMIC AND HYDRODYNAMI C . . .
~Pg2Pw!

2s
~2r 02r02h`!~r2h`!

5
1

s E
h`

r0
~r 02h!P~h!dh1~r 02h`!2~r 02r0!cosb0 .

~12!

It is useful to rewrite Eq.~12! in its customary form
@25,33# by introducing the apparent contact angleu as

cosu511
1

s E
h`

r0 ~r 02h!

r 0
P~h!dh1

h`
2

2r 0~r 02h`!

1
1

2s
P~h`!h`S 22

h`

r 0
D . ~13!

Then Eq.~12! takes the following familiar form@25,33#:

~Pg2Pw!

2s
r 0~12q2!5cosu2q cosb0 , ~14!

where

q5
~r 02r0!

r 0
.

In the limiting caser0 /r 0!1, or in the two-dimensiona
case, Eqs.~13! and ~14! give

cosu511
1

s E
h`

r0
P~h!dh1

1

s
P~h`!h` , ~15!

Pg2Pw5
s

r0
~cosu2cosb0!. ~16!

In particular, Eq.~16! is merely the Young-Laplace equatio
written for an apparent interface, provided that the interfa
is modeled by an arch@Fig. 2~a!#. The range of applicability
of Eq. ~15! is restricted to the film thickness, ensuring t
existence of an apparent contact angle. Thus, the inequ
u>0 must hold. In the opposite case, the meniscus does
intersect the capillary wall and the apparent contact an
loses its meaning@Fig. 2~b!#. However, even in such a cas
Eq. ~16!, holds and allows one to assess the effect of
substrate wettability on the thermodynamic characteristic
a confined lamella. In the theory of wetting of pure liquids
similar modification of the Young-Laplace equation w
pointed out a long time ago, and now the existence o
prolonged transition zone provides a useful tool for meas
ing the disjoining pressure isotherms and related charact
tics ~for a review, see Ref.@34#!.

Using the assumption that the meniscus crest is m
higher than the film thickness, and the crest is much sma
than the radius of capillary, we may consider only t
asymptotic profile of the Plateau border. The profile is o
tained by integrating Eq.~9! in the limiting caser 0→`,

cosb~h!5
1

s E
h`

h

„P~ t !2P~h`!…dt11. ~17!
e

ity
ot
le

e
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a
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is-

h
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-

It should be noted that the resulting profile has been p
sented by several authors in different forms, for examp
Refs.@35,23,32,36#. Thus the Plateau border has the form

x5E
r0

h XS cosb02
*h

r0
„P~h!2P~h`!…dh

s
D 22

21C21/2

dh.

~18!

In particular, for any disjoining pressure isotherm of t
form P(h)5An /hn with an integern, the size of the transi-
tion region can be estimated asl pl;Ar0h` /(12cosb0)n
~see the Appendix!. In this respect, the size of the Platea
borders of lamellae created from different frothing solutio
are indistinct, provided that the physical parametersr0 and
h` are identical.

Concluding the results of this section, we emphasize t
for a confining lamella, the conditions of thermodynam
equilibrium depend on the wettability conditions for the su
strate. Hence the conditions must be taken into account in
analysis of the lamella friction.

III. HYDRODYNAMICS OF LAMELLA SLIPPAGE.
SAIL BOAT MODEL

In the thermodynamic equilibrium, the contact conditio
between a free film and a wetting film can be found by a
plying ordinary thermodynamic rules. The case of movi

FIG. 2. ~a! Geometrical construction elucidating the generaliz
Young-Laplace equation~16!. ~b! The apparent contact angle lose
its physical meaning if the apparent radius of the Plateau borde
smaller that a certain value.
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7610 PRE 58KONSTANTIN KORNEV AND GALINA SHUGAI
lamella dictates rules. The flow pattern within the wetti
film and lamella plays an important role here. In the motio
all geometrical parameters such as the lamella thickn
wetting film thickness, inclination angles, and curvatures
the menisci at the Plateau border altogether must be mutu
consistent. From the hydrodynamic point of view, t
lamella causes a time-dependent tensile force applied to
wetting film surface. Therefore, from the mathematical po
of view, the problem of determination of the shape of t
moving wetting film can be considered as a free bound
problem. Thus the thickness of the wetting film behind a
ahead of the contact line, and the time-dependent coordin
of the contact line, must be determined. This should be d
by accounting for the specific features of the coexiste
conditions of the free film and the wetting film.

The problem requires the solution of the respective hyd
dynamic problem for the wetting fluid, which can be a dif
cult task. However, the lubrication approximation of the flo
pattern can be utilized instead. While not precise, it of
provides correct trends@4,10,30,37–39#. Thus, neglecting the
gas viscosity and assuming that pressures within the bub
are constants, the volumetric flow rate can be written as

q52
hi

3

3m

]Pw

]x
, ~19!

wherem is the viscosity of the wetting fluid,hi( i 56) is the
film thickness in each bubble, andx is the coordinate along
the capillary. At each point, the pressurePw across the film
is a constant that depends on the film thickness as follow

Pw5Pi22s iH2P~hi !, ~20!

wherePi is the gas pressure within thei th bubble,s i is the
surface tension in thei th bubble, and 2H is the curvature of
the interface. Hereinafter, we consider the limiting ca
h/r 0!1. Then the curvature can be expressed as

2H5
d2hi

dx2 Y X11S dhi

dx D 2C3/2

. ~21!

The presence of the disjoining pressureP(hi) guarantees
the film stability. Thus, the flow within the film is controlle
by the ‘‘dynamic’’ capillary pressure, and it tends to an eq
librium between the capillary, surface, and viscous forc
For example, if the pushing force is switched off, the bub
profile works out the shape of constant mean curvature
Eqs.~20! and ~21! predict.

The condition of mass balance provides the final conn
tion between the pressure and film thickness:

]hi

]t
1

]q

]x
50. ~22!

Thus Eqs.~19!–~22! give two film profilesh2 andh1 asso-
ciated with the left and right bubbles, respectively. The p
files have to be matched at the three-phase contact line
the free boundary, i.e., at the three-phase contact line,
boundary conditions should be formulated because the
vature in Eq.~20! is expressed by means of the second
rivatives of the fields, and Eqs.~19! and ~22! add two more
derivatives.
,
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(a) Continuity condition.The first boundary condition is
the continuity condition, namely,

h2ux5j205h1ux5j105r, ~23!

wherej is the contact line position.
(b) Force balance.The usual conditions of local mechan

cal equilibrium give the second boundary condition. Ho
ever, some restrictions due to the geometry appear~Fig. 3!.
We denote byb i ( i 56) the inclination angle of thei th
air-wetting fluid interface with respect to the rigid wal
Since the profile of the ‘‘minus’’ film is described by a
increasing function, and the ‘‘plus’’ film by a decreasin
one, the anglesb i are expressed as

tan b2~r!5
]h2

]x U
x5j20

, ~24!

tan b1~r!52
]h1

]x U
x5j10

. ~25!

Thus Eqs.~24! and ~25! connect the inclination angle
with the first spatial derivative, i.e., with the slope of the fil
profiles at the contact line. On the other hand, the inclinat
angles depend on the lamella tension, as follows from
conditions of mechanical equilibrium:

s2cosb2~r!2s1cosb1~r!52gdsin c2F fr , ~26!

s2sin b2~r!1s1sin b1~r!52gdcosc, ~27!

where 2gd is the dynamic tension of the lamella, andF fr is
the extra force caused by a specific friction of the cont
line. The value of this force is unknown beforehand, and
must be found.

The surface tensions in adjacent bubbles can be dis
guished by virtue of different dynamic concentrations of t
surfactant. However, if we neglect the concentration effe
then the surface tensions in different bubbles do not dif
As shown in Sec. II, the equilibrium lamella tension is
function of the film thickness. However, the dynamic lame
tension differs from its thermodynamic value due to a co
tribution from the hydrodynamic flow within the lamella.

FIG. 3. Schematic of a lamella sliding over the wetting film.



s
o
a

ri-
th
in

os
ro

c

c
dy
e
ue
an
tio
e

ng

e
e
u
g
tr

ch
m
re
ly
t o
es

el
t t
o
t o

e

es-
lla,
the
Eq.
et-

of
lla

ic
an-

n.

eol-
ian
ion
rate

e
is
pa-
and

lm

act

e
plus
d-
t the
w-
lla

he
he
er.
ce;
tal

PRE 58 7611THERMODYNAMIC AND HYDRODYNAMI C . . .
(c) Lamella thickness and dynamic tension.We assume
for simplicity that, during the motion, the lamella bulge
uniformly like a spherical cap and does not change its v
ume; the fluid is redistributed over a new area due to
elongation flow. The main objective of this simplified de
vation is to illustrate the nature of dynamic tension. Thus
first assumption permits the description of the flow with
the lamella in spherical coordinates. The second one imp
a diagonal form for the viscous stress tensor. The nonze
components of this tensort rr , tuu , andtww are functions of
the film thickness only. Therefore, the normal stress balan
at both of the lamella interfaces are@28,24#

2S P21
2s2

R D1P l~hl !52Pw1t rr , ~28!

2S P12
2s1

R D1P l~hl !52Pw1t rr . ~29!

As follows from Eqs.~28! and~29!, the mean radiusR of
the lamella can be calculated from the ordinary Lapla
equation in the same manner as in equilibrium thermo
namics. The lamella tension and the pressure differenc
the Laplace equation should be treated as dynamic val
because they differ from the equilibrium values by
amount lost due to the lamella motion. The Laplace equa
gives the equation of motion for the individual lamella. If th
radius R is expressed through the lamella chord radiusr 0
2r, the apparent contact anglec is found from

sin c

~r 02r!
5

P22P1

2~s21s1!
. ~30!

The same system of equations~28! and ~29! provides the
following relation between the lamella thickness, disjoini
pressure, and normal stress:

P l~hl !5 1
2 „P21P122Pw~j!…1t rr . ~31!

At this step, the rheological model for the lamella is r
quired. It should be noted, however, that there is no conv
tional rheological model for foam lamellae because the str
ture of the foam films remains enigmatic. The followin
possible structures have been suggested: a smecticlike s
ture @40,41#, a cubic lattice of ordered micelles@42#, a fluid
with a specific exponential correlation function@43#, a bi-
layer of surfactants with aqueous core@44#, and a gel-like
structure@45#. Each of them requires an individual approa
to the rheology. Specific surface properties of the foam fil
also dictate an additional modification of the rheological
lations@46#. Therefore, it is difficult to designate specifical
the form of the normal stress. Nevertheless, quite a lo
rheological laws permit the expression of the normal str
t rr in terms of the extensional strains rateserr 5d ln(hl)/dt
and eww5d ln(r02r)/dt @47#. The normal stresst rr can be
expressed then through the time derivative of the lam
thickness and chord radius. For instance, assuming tha
lamella is deformed as a Newtonian fluid, we have the f
lowing linear relation between the respective componen
the stress tensor and the extensional strain rate:t rr
5m ld ln hl /dt, wherem l is the lamella viscosity. Thus th
l-
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lamella thickness depends implicitly upon the dynamic pr
sure drop, the magnitude of the pressure within the lame
and the height of the crest. Since the pressure within
lamella must be equal to the pressure in the wetting fluid,
~31! provides a relation between the parameters of the w
ting film and the lamella thickness. If the functional form
the disjoining pressure is given beforehand, the lame
thickness can be found from Eq.~31! at any instant of time
as a function of the input parameters. Finally, the dynam
tension of the lamella can be found from the balance of t
gential forces as

2gd5s21s11E
hl

`

P l~h!dh2hl„Pw~j!2P1…1hltuu .

~32!

Here we usehl P1 as a reference or background tensio
Substituting the difference„Pw(j)2P1… from Eq. ~29! into
Eq. ~32!, we arrive at the formula for dynamic tension

2gd52g1D21D12hl~tuu2t rr !, ~33!

whereD i5s i2s.
The above analysis demonstrates how the lamella rh

ogy influences its dynamic tension. Thus, for a Newton
fluid, theu component of the stress tensor is a linear funct
of the respective component of the extensional strain
euu . Because of the fluid incompressibility, one haseuu5
2err 2eww . Therefore,tuu can be expressed through th
film thickness and the lamella radius. In conclusion of th
subsection, it should be emphasized that all the lamella
rameters, such as its thickness, apparent contact angle
tension, are self-consistently connected with the wetting fi
parameters.

(d) Pressure continuity.The lubrication approximation
implies that the pressure in the wetting fluid at the cont
line varies continuously, i.e., the equationPwux5j20
5Pwux5j10 holds. Making use of Eq.~20!, the desired
boundary condition is written as

P22s22Hux5j205P12s12Hux5j10 . ~34!

(e) Mass balance.The final two boundary conditions ar
given by the mass balances in the whole system lamella
wetting film, and in the microelement of the moving boun
ary. The former one depends on the mass exchange a
ends of the capillary. For the latter one, consider the follo
ing analysis of infinitesimal mass variation. The lame
passes the distancedj during the time intervaldt. The mass
change is„r2min(h2ux→2` ;h1ux→`)…dj; on the other hand,
this change is the flow influxqdt. Therefore,

„r2min~h2ux→2` ;h1ux→`!…
dj

dt
5qux→j ,

~35!
qux5j205qux5j10 .

A similar procedure can be used for a derivation of t
boundary condition at the moving contact line even if t
lamella squeezes a portion of liquid into the Plateau bord
The only modification concerns the integral mass balan
that is, we must either account for the fact that the to
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liquid volume in the system ‘‘lamella plus wetting film’
remains the same, or presume some law for fluid deplet
If we assume that the total mass is conserved, the follow
additional constraint to the admissible crest height holds

„hlS2p~r 02r0!2hl 0
…

5pE
2`

`

@r 0
22„r 02h6~x!…2#2@r 0

22„r 02h0~x!…2#dx,

~36!

wherehl 0
is the equilibrium thickness of the lamella,h0(x)

is the integral of Eq.~2!, r0 is the height of the equilibrium
crest, andS denotes the area of moving lamella.

Thus, the free boundary problem is formulated in terms
the wetting film thickness. Equations~19!–~36! must be
combined with the boundary conditions at the ends of
wetting films. At the end where the film remains at rest,
film thickness has the well defined valueh1(`,t)5h` . At
the same time, the thickness of the residual filmh2

` at the
opposite end is unknown in advance, and has to be foun
seems reasonable to assume that all the spatial derivativ
both ends vanish, i.e., the wetting films tend to be flat at
ends. Finalizing the statement, it should be noted that
initial conditions depend on the scenario of loading.

IV. TRAVELING WAVE SOLUTION

To demonstrate the characteristic features of the mo
developed in Sec. III, we analyze the traveling wave solut
of the form

h6~x,t !5h6~s!, s5x2Ut,

whereU is the velocity of the lamella propagation over th
wetting film. This solution describes a steady motion of
individual lamella over the prewetted pore, as well as
steady motion of thei th lamella of a moving bubble train
Since the lamella moves steadily, the viscous stresses d
pear, tuu5t rr 5tww50, provided that the lamella behave
like an ordinary liquid film. If the lamella is a liquid crysta
the additional stresses should be specified. We restrict
selves to the analysis of a fluidlike lamella, so that the
namic tension 2gd and the lamella disjoining pressur
P l (hl) are influenced by the viscous forces only implicitl

The integration of the governing equations with respec
s leads to the equation

2U~h62h6
` !5

h6
3

3m

dPw

ds
, ~37!

in which the minus sign is associated with the left infinit
and the plus sign denotes the thickness of the advan
meniscus; index ‘‘̀ ’’ denotes the value of the respectiv
quantity at infinity. The integration of Eq.~37! results into
the following relation between the pressure drop and
lamella speed:

23mUS E
0

1` h12h1
`

h3 ds1E
2`

0 h22h2
`

h3 dsD 5P12P2 .

~38!
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The mass balance@Eq. ~35!# reveals that the residual film
thickness and the film thickness at the right infinity are t
same, i.e.,

h2
` 5h1

` 5h` . ~39!

Hence the lamella moves steadily only by virtue of the pr
ence of the pressure difference in the liquid within unifor
pieces of the lining film. This result justifies the hypothes
of Hirasaki and Lawson@5#.

A. Classification of displacement regimes

Although the general analysis of the similarity solutio
allows one to obtain a number of useful relations@Eqs.~37!–
~39!#, it is still quite complicated and requires the applicati
of numerical methods. More tractable analytical results c
be obtained if we specialize the range of the input phys
parameters. Furthermore, introducing the pair cosb6(h) in
the same way as that is defined in Eq.~8!, and rewriting Eq.
~37! as

3e Ca
~h2h`!cosb6~h!

h3A12cosb6
2 ~h!

52
d2cosb6~h!

dh2 1
1

s

dP

dh
,

~40!

one can classify the solutions with respect to the range
variation of the capillary number Ca. Note that we choo
the angles in Eqs.~40! by using their definition at the poin
h5r ~Fig. 3!. Moreover, the change of variables can be a
plied only if the functions cosb6(h) vary monotonically.
Hence, parametere is positive for a receding meniscus,e5
11, and it is negative (e521) if the profile of the advanc-
ing meniscus is described by a monotonically decreas
function @see Fig. 4~a!, top#. However, if the meniscus pos
sesses an indentation@Fig. 4~a!, bottom#, the profile of the
advancing meniscus must be described by two functionsb1

d

andb1
i ; the first one is a decreasing function and the ot

one is an increasing function. In other words, the stepw
function e(h) can be introduced as follows:e(h)521 if
h* <h<r, ande(h)511 if h* <h<h` , provided that the
critical thickness h* must be found by matching bot
branches of the solution. Thus one cannot specify in adva
the form of the stepwise functione(h), and an additional
analysis should be done in order to select a suitable shap
the Plateau border. Mathematically, this means that it is n
essary to clarify a behavior of the functions cosb6(h) at the
ends of capillaryh5h` .

Due to the boundary conditions, the asymptotic behav
of the solution can be described by the following gene
form: cosb6(h)'12A6(h2h`)k. Substituting this anzatz
into Eq. ~40!, one obtainsk>2, so that the linear term is
absent. ParametersA6 can be found from the equations

7
3 Ca

L3/2 5u6~u6
2 21!, L.0, ~41!

7
3 Ca

~2L!3/25u6~u6
2 11!, L,0, ~42!
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FIG. 4. ~a! The presence of an indentation in the advancing meniscus~at the bottom! allows one to select the specific regimes of lame
sliding. ~b! Graphic solution of the cubic equation~42!. QS, HG, and Breth denote quasistatic, Hervet–de Gennes, and Bretherton re
respectively.~c! The ratios between advancing and receding inclination angles vs parameter Ca/L3/2 for different regimes of lamella sliding
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where u65h`A2A6/AuLu, and L5(2h`
2 /s)dP/dh(h`).

ParameterL can be treated as the stability parameter. If it
negative, the film is thermodynamically unstable and bre
down into droplets. Otherwise, the wetting film exis
@16,39#.

The analysis of the cubic polynomial equations~41! and
~42! reveals distinguishing regimes in the behavior of t
wetting film during the lamella motion. Only positive roo
are physically acceptable. One can see that there is a un
solution u2 associated with the plus sign on the left ha
sides of Eqs.~41! and ~42!. However, if the right interface
tends to its flat state from below, i.e., if the thickness
creases at infinity, then, for the ‘‘plus’’ cosine, the plus si
must be taken in the left hand side of Eqs.~41! and ~42!.
Thus the disappearance of the roots, which is associated
the minus sign in the left hand side of Eqs.~42!, can be
attributed to the presence of an indentation in the wett
film ahead of the lamella.

Hence the regimes of lamella sliding can be classifi
according to the characteristic behavior of the inclinat
s

ue
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ith

g

d

anglesb6(h) at plus and minus infinity, provided that th
approximate equalityb6'A2A6(h2h`) holds. The pecu-
liarities in the behavior of the roots of the cubic equati
classify the regimes. Explicitly, the growth rate of advanci
angleb1 /(h2h`)'A2A1 is a convenient quantity to dis
tinguish the regimes. Below we consider only a ‘‘regula
case of lamella displacement, when no indentation of
receding meniscus occurs.

Negative stability parameter.The inclination angles be
have identically,

b6
HG

~h2h`!
'

2

h`

AuLu/3 sinhS 1

3
arcsinh

35/2

2
Ca/uLu3/2D ,

but the advancing meniscus forms an indentation. In
characteristic limit Ca/uLu3/2→0, the linear term on the righ
hand side of Eq.~42! dominates the quibic one. In othe
words, similarly to the Hervet–de Gennes~HG! regime of
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wetting @48#, the viscous and surface forces govern the fl
pattern. Hence, the regime is called the Hervet–de Gen
regime.

Positive stability parameter.There are at least three po
sible regimes of lamella sliding: the Bretherton regime,
a
th
f t
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Hervet–de Gennes regime, and a quasistatic regime of
tion. Figure 4~b! shows a scheme for selection of the resp
tive roots.

(i) Bretherton regime.Both advancing and receding incl
nation angles behave identically,
this
s may be

of the
eep

ay
b6
Breth

~h2h`!
'2

2

h`

AL/3 cosX1
3

arccosS 2
35/2

2
Ca/L3/2D12p/3C, ~43!

but a distinguishing indentation at the advancing meniscus occurs. In the limiting case Ca/L3/2→0, the capillary and viscous
forces dominate the surface forces. Since Bretherton@4# was the first to consider a similar problem of bubble displacement,
case is called the Bretherton regime of lamella displacement. Both the Hervet–de Gennes and quasistatic regime
realized only in the range 0<Ca/L3/2<2/35/2.

(ii) Hervet–de Gennes regime.The growth rates of advancing and receding angles have the forms

b1
HG

~h2h`!
5

2

h`

AL/3 cosX1
3

arccosS 2
35/2

2
Ca/L3/2D14p/3C,

b2
HG

~h2h`!
52

2

h`

AL/3 cosX1
3

arccosS 2
35/2

2
Ca/L3/2D12p/3C.

If parameter Ca/L3/2 is small, the surface and viscous forces dominate the capillary forces, so that the growth rate
advancing inclination angle can be estimated asb1

HG/(h2h`)'3 Ca/Lh` . At the same time, the rear meniscus tends to k
its equilibrium shape. Consequently, the growth rate of the receding angle can be approximated asb2

HG/(h2h`)'L1/2/h` ,
and there is a difference in advancing and receding angles. Figure 4~c! shows that the ratio of the respective growth rates m
be perceptible if parameter Ca/L3/2 tends to its critical value 2/35/2.

(iii) Quasistatic regime.In a quasistatic~QS! regime of lamella sliding, the growth rates are expressed as

b1
QS

~h2h`!
5

2

h`

AL/3 cosX1
3

arccosS 2
35/3

2
Ca/L3/2D C,

b2
QS

~h2h`!
52

2

h`

AL/3 cosX1
3

arccosS 2
35/2

2
Ca/L3/2D12p/3C.
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For Ca/L3/2!1, the capillary and surface forces play
dominant role. A remarkable difference compared to
Hervet–de Gennes regime concerns the growth rates o
advancing and receding angles that are identical to that o
Bretherton regime,b1

QS/b2
QS'1. However, an indentation a

the advancing meniscus is absent. As parameter Ca/L3/2 ap-
proaches 2/35/2, the ratiob1

QS/b2
QS decreases up to12. At this

point, the difference in the Hervet–de Gennes and quasis
regimes disappears. If parameter Ca/L3/2 further increases
we inevitably achieve the Bretherton regime withb6

Breth

given by Eq.~43!.
Although the above classification seems to be clear,

selection principle for the Hervet–de Gennes and quasis
regimes remains enigmatic. In this paper we concent
solely on the analysis of the quasistatic regime of lame
motion.

B. Quasistatic motion

At low speeds, the displacement can be classified as
sistatic. In this regime, the film profile is governed almo
entirely by the capillary and disjoining pressures. In oth
e
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he
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e
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words, one expects that the viscous term in Eq.~40! only
slightly alters the basic shape of the equilibrium Plateau b
der. Therefore, the solution of Eq.~40! can be represented a
an asymptotic expansion in terms of the small capillary nu
ber Ca. It should be stressed here that the presence o
disjoining pressure allows one to seek theregular asymptotic
solution, which is in contrast to the Brethertonsingular
asymptotic solution@4,49#. In the Bretherton solution, the
singularity with respect to Ca originates from a speci
matching of the spherical caps of equilibrium menisci with
uniform film. The classical formulation suggests the on
possibility for the equilibrium coexistence of menisci an
walls, namely, only contact with a dry wall is allowed. Co
sequently, any theory that neglects the surface forces
counters a problem in matching; one has to link a mov
film with menisci whose spherical caps at the wall form
finite contact angle. Thus to smooth out the angle that
equilibrium meniscus forms with the wetting uniform film
the theory should invoke a singular perturbation techniq
In the presence of equilibrium wetting film, one may use t
ordinary perturbation theory, because the shape of the m
ing Plateau border is compatible with its basic equilibriu
profile.
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We seek the asymptotic solution in the form cosb6(h)
5cosb(h)1Can6 . In order to guarantee that the seco
term is smaller than the first one, the following applicabil
condition is prescribed

Ca&S 2
h`

2

s

dP

dh D 3/2

!1. ~44!

The principal term cosb(h) was found in Sec. II. For the firs
term proportional to the capillary number, we have the f
lowing equations:

73
~h2h`!cosb~h!

h3A12cos2b~h!
52

d2n6

dh2 . ~45!

Taking into account the behavior of the solution at the po
h5h` , the solution to Eqs.~45! can be written as

n6563E
h`

h ~h2t !~ t2h`!cosb~ t !

t3A„12cos2b~ t !…
dt. ~46!

Using this solution, one can express all the physical par
eters. In particular, accounting for Eq.~34!, the relation be-
tween the applied pressure drop and the lamella speed t
the form of the Newtonian friction law

DP5P22P156mUE
h`

r0 ~ t2h`!cosb~ t !

t3A„12cos2b~ t !…
dt. ~47!

The angle between the hemispherical lamella and the ch
also depends linearly on the lamella speed; the follow
formula holds:

c5
3~r 02r0!mU

2s E
h`

r0 ~ t2h`!cosb~ t !

t3A„12cos2b~ t !…
dt. ~48!

Therewith, the balance of forces at the contact line, Eqs.~26!
and ~27!, requires one to make the correction to the cont
angles in the formb6(r)5b01b6

1 , where

b7
1 56S F fr

2g
2c D .

Since the angles differ only in sign, the boundary conditio
~24!–~25! serve as the solvability condition. From the latte
the friction force is found as

F fr56mUE
h`

r0S g~r 02r0!

2s
2~r02t ! D

3
~ t2h`!cosb~ t !

t3A„12cos2b~ t !…
dt. ~49!

The reminder of unused boundary conditions reveals
the lamella maintains its thickness unchanged during
stretching. In other words, the deviation of the lamella thic
ness relative to the equilibrium thickness is at least one o
smaller. The lamella tension is also maintained at its equi
rium level, and the height of the Plateau border crest rem
the same. Hence the first order approximation allows
-
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vertex to rotate, but the radius of lamella rim keeps its eq
librium value. It can be checked by the direct substitution
the solution into Eq.~36! that the wetting film does not los
its mass, and no extra mass comes from the lamella.

Thus, during its slow creep, the lamella slightly bulges
form a hemispherical sail, with the radius being inverse
proportional to the lamella velocity@Eqs.~30! and~48!#. The
physical parameters of the contact line—the lamella tens
the rim radius, and the lamella thickness—altogether re
their equilibrium values.

V. DISCUSSION AND CONCLUSIONS

The results presented in this paper point directly to
critical question of how the substrate wettability influenc
the lamella friction. In our theory, the wettability condition
are expressed through specific disjoining pressure isothe
Because of a rather wide spectrum of admissible disjoin
pressure isotherms, one can imagine a variety of displa
ment regimes, depending on the wetting film thickne
Among the family of isotherms, specific foaming agen
somehow select acceptable isotherms, so that the frot
solutions can be classified relatively to their wettability
the given substrate@38,50#. The foaming agents are made
a mixture of several surfactants, and the mother liquid u
is not pure. Therefore, the real situation is quite complicat
Usable literature results are sparse, and they collect disj
ing pressure isotherms for either free or wetting films.
usual model foaming system is a water solution of sodi
dodecyl sulfate~SDS! with a sodium chloride additive
whose wettability with respect to quartz and foaminess
well documented@27,36,41#. Since SDS is an anionic surfac
tant, the behavior of the corresponding foam films is det
mined by the competition between the attractive van
Waals forces and the repulsive screened Coulomb forces
to the dissociation of ions from the amphiphilic molecul
@16,51#. Churaev and Zorin@36# showed that for film thick-
nesses of about 100 nm and surfactant concentrations b
the critical micelle concentration, electrostatic interactio
dominate. Therefore, the disjoining pressure isotherm can
approximated by the Derjaguin-Landau formulaP
5ADL /h2, with ADL'10212– 10211 J m22. Taking into ac-
count that the presented theory may be applied if and on
inequality ~44! holds, one can reformulate the validity con
dition for the theory as

Ca&S 2ADL

sh`
D 3/2

!1.

In this range of capillary numbers, the leading order term
asymptotic expansion with respect toa25ADL /sh` can be
calculated as~see the Appendix!

DP'Ca
~2s!3/2

ADL
1/2

1

h`
1/2.

For example, if the film thickness is of the order of 100 n
and if the surface tension is of the order of 30 mN/m, t
pressure drop is Ca3107 Pa. On the other hand, the range
admissible capillary numbers lies within the interval C
&1025– 1024. Therefore, if Ca'1024, the applied pressure
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drop must be of the order of 103 Pa, that is a value near th
capillary pressure, under which a single lamella created fr
a dilute solution breaks@27#. Hence one may expect that th
lamella most likely disappears before it reaches a station
regime of motion.

If the dispersion forces are responsible for the film sta
ity, a similar calculation can be performed for the van d
Waals isotherms of disjoining pressure,P5AvdW/h3. In the
leading order approximation with respect to the parame
a35AvdW/sh`

2 , the applied pressure drop can be expres
as ~see the Appendix!

DP'6„31/22 ln~2131/2!…Ca
s3/2

AvdW
1/2 .

Although the pressure drop does not depend on the
thickness explicitly, the connection can be established
means of Eq.~44!. Thus

Ca&S 3AvdW

sh`
2 D 3/2

!1.

The estimations@51# AvdW'10221– 10219 J, s'30 mN/m,
and h`'50 nm lead to the following admissible range
capillary numbers: Ca&1026– 1023. Within this range, the
pressure drop can be estimated asDP'103– 106 Pa. There
is a speed interval, for which the lamella most likely disa
pears.

A moving lamella is very sensitive to environmental co
ditions; the fact that the lamella is thermodynamically sta
at rest does not imply its stability in motion. The experime
tal observation of the effect of dynamic coarsening of foa
in porous media was reported by Khatib, Hirasaki, and F
@52#. However, no explanation of this phenomenon was p
posed in the literature@1,2#. Our analysis suggests that th
dynamic coarsening effect is caused by anomalous frictio
each individual lamella under, from the thermodynam
point of view, critical conditions. If the hydrodynamic con
ditions are limited to the quasistatic region, the principal fa
tors that affect the apparent viscosity of lamellae in unifo
capillaries are thermodynamic ones. Viscous, capillary,
surface forces altogether modify the Plateau border in
faces that are deformed against the restoring force of
surface and lamella tensions. However, if condition~44! is
satisfied, the friction force is determined solely by the sha
of equilibrium menisci. Since the Plateau border spre
over rather a large distance~see Sec. II!, the resulting viscous
dissipation is anomalous.
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Three limiting regimes of the lamella friction are foun
Only for one of them is the friction proportional to th
lamella velocity; for two others, the friction is non
Newtonian~Hervet–de Gennes and Bretherton models!. The
Bretherton regime selects a unique film. The lamella c
propagate steadily if and only if the thickness has a cer
value. Furthermore, there are no other traveling wave s
tions @15#.

For the problem of a bubble displacement@14,30#, the
increasing of the displacement speed reduces the app
contact angle between the substrate and bubble interface
til the angle eventually reaches zero. As a result, a visu
detectable film is deposited independently of the surface w
tability. One may expect that a similar change of the mot
regimes occurs for a foam lamella. However, the mechan
of transition between the quasistatic, Hervet–de Gennes,
Bretherton regimes still remains an open question. A deta
experimental analysis of foam motion in smooth capillar
at low capillary numbers could clarify the situation.
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APPENDIX

In practice, the customary approximation of a disjoini
pressure isotherm isP(h)5An /hn. Here we present som
useful formulas obtained for any disjoining pressure is
therm of such a form with an integern>2. In particular, Eq.
~17! becomes

cosb~h!52
an

n21 S ~h/h`!n~n21!2n~h/h`!n2111

~h/h`!n21 D11,

~A1!

where an5An /sh`
n21. Using boundary condition~11!, an

can be expressed in terms of the crest height and inclina
angle:

an5
~12cosb0!~n21!

~r0 /h`!~n21!2n1~r0 /h`!12n . ~A2!

Substituting Eq.~A1! into Eq. ~18!, one can obtain
x~ t !5S n21

an
D 1/2E

r0

t g~h!

~h/h`21!
dh

5S n21

an
D 1/2

h`„g~ t !ln~ t2h`!2g~r0!ln~2h`1r0!…2S n21

an
D 1/2E

r0

t

g8~h!ln~2h`1h!h`dh,

where
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g~h!5

2
an

n21
„~h/h`!n~n21!2n~h/h`!n2111…1~h/h`!n21

F S 2~h/h`!n212
an

n21
„~h/h`!n~n21!2n~h/h`!n2111…D (

l 50

n22

~ l 11!~h/h`! l G1/2.

For h→h` , one hasx(h).Ar0h` /(12cosb0)n ln(h/h`21). Hence, the size of the transition region can be estimate
l pl;Ar0h` /(12cosb0)n.

For smallan , in the leading order the Plateau border@Eq. ~18!# can be approximated as

x~ t !.S n21

2an
D 1/2E

r0

t 1

~h/h`21!

~h/h`!~n21!/2

S (
l 50

n22

~ l 11!~h/h`! l D 1/2 dh. ~A3!

Similarly, in leading order with respect toan , the first correction in the asymptotic solution for the inclination angles@Eq.
~46!# is

n6.63S n21

2an
D 1/2E

h`

h ~h2t !~ t/h`21!~ t/h`!~n27!/2

h`
2A~ t/h`!n~n21!2n~ t/h`!n2111

dt. ~A4!

The relation between the applied pressure drop and the lamella speed@Eq. ~47!# can be represented as

DP.6 CasS n21

2an
D 1/2E

h`

` ~ t/h`21!~ t/h`!~n27!/2

h`
2A~ t/h`!n~n21!2n~ t/h`!n2111

dt, ~A5!

and Eq.~49! is rewritten as

F fr53 CasS n21

2sn
D 1/2 gr 0

s E
h`

` ~ t/h`21!~ t/h`!~n27!/2

h`
2A~ t/h`!n~n21!2n~ t/h`!n2111

dt. ~A6!

Consider two physically justified examples of the disjoining pressure isotherm of the type under consideration
electrostatic interactions dominate others, and, moreover, the Derjaguin-Landau approximation is responsible for the d
pressure, one hasn52 and A25ADL . Equation ~18!, that describes the profile of the Plateau border, can be expli
integrated to give

x52S 2

a2
r0h`2~r02h`!2D 1/2

1S 2

a2
hh`2~h2h`!2D 1/2

1
h`

A2a2

ln
h2h`

r02h`
2

h`

A2a2

ln
&A2hh`2a2~h2h`!21h`1h

&A2r0h`2a2~r02h`!21h`1r0

,

wherea25ADL /sh` . Using Eq.~A2! with n52, equation for profile of the Plateau border can be rewritten in terms of
measurable parametersr0 , h` , andb0 . If cosb051, the solution is identical to the solution found by Neimark and Kheif
@32# for profile of the meniscus in a slot. In the general case cosb0Þ1, the first correction proportional to the capillary numb
@Eq. ~46!# becomes

n152n25
3

2

a2~h1h`!2h

a2
2hh`

A2a2hh`2a2
2~h2h`!22

3

A2a2
S 22

h

h`a2
D

23S 1

2

h/h`

a2
2 11Darcsin

h1~h2h`!a2

hA2a211
13 arcsin

a2~h2h`!2h`

h`A2a211
13S 1

2

h

h`a2
2 12Darcsin

1

A2a211
.

The relation between the applied pressure drop and the lamella speed takes the form

DP53
Ca s

h`a2
2 S a2~r02h`!2r0

r0
2 A2a2r0h`2a2

2~r02h`!21A2a2D
23

Ca s

h`a2
2 S arcsin

r01a2~r02h`!

r0A2a211
2arcsin

1

A2a211
D ,
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and the friction force is given by

F5
6 Ca

4a2
2h`

f ,

where

f 5@„g~r 02r0!22r0s…„a2~r02h`!2r0…24sa2r0h`#

3
A2a2r0h`2a2

2~r02h`!2

r0
2 1A2a2„g~r 02r0!22s~r022h`a2!…

2„g~r 02r0!2~2r014a2
2h`!s…arcsin

r01a2~r02h`!

r0A2a211

1„g~r 02r0!22s~r014h`a2
2!…arcsin

1

A2a211
24a2

2h`s arcsin
a2~r02h`!2h`

h`A2a211
.

The second example concerns the films stabilized by the Lifshitz–van der Waals forces. If the dispersion forces d
others, the isotherm of disjoining pressure has the formP5AvdW/h3. Though the problem cannot be integrated explicit
asymptotic Eqs.~A3!–~A6! yield, respectively,

x.a3
21/2~A2h1h`2A2r01h`!S r0

~12cosb0! D
1/2

1a3
21/2S r0h`

~12cosb0! D
1/2

3S 1

)
ln

h2h`

r02h`
22 ln

A2h1h`1A3h`

A2r01h`1A3h`
D ,

n6.63a3
21/2S)h2A~2h1h`!h`

h`
12

~h1h`!

h`
ln

Ah`1A~2h1h`!

~11) !Ah
D ,

DP.6
Ca s

h`
a3

21/2
„)2 ln~21) !…,

F fr5F fr53 Casa3
21/2 r 0

h`

g

s
„)2 ln~21) !…,

wherea35AvdW/sh`
2 .
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u-
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